

Date Planned ://	Daily Tutorial Sheet - 18	Expected Duration: 90 Min
Actual Date of Attempt : / /	Level - 3 🕟	Exact Duration :

- Given that f satisfies $| f(u) f(v) \le | u v |$ for u and v in [a, b]. Then $\left| \int_{a}^{b} f(x) dx (b a) f(a) \right| \le c$ 210. (i)
- $\frac{(b-a)}{2}$ (B) $\frac{(b-a)^2}{2}$ (C) $(b-a)^2$
- The area bounded by the curves $x\sqrt{3} + y = 2\log_e(x y\sqrt{3}) 2\log_e 2$, $y = \sqrt{3}x$, $y = -\frac{1}{\sqrt{3}}x + 2$ is: (ii)
 - $2\log_e 2$ sq. units (A)

(B) $2\log_e 2 + 1$ sq. units

 $2\log_e 2-1$ sq. units (C)

- (D) 4 log_e 2 –1sq. units
- Consider $f(x) = \begin{cases} \cos x & 0 \le x < \frac{\pi}{2} \\ \left(\frac{\pi}{2} x\right)^2 & \frac{\pi}{2} \le x < \pi \end{cases}$ such that f is periodic with periodic with period π . 211.

Then which of the following is not true?

- The range of f is $\left| 0, \frac{\pi^2}{4} \right|$ (A)
- (B) f is discontinuous for infinite values of x
- The area bounded by y = f(x) and the X-axis from x = 0 to $x = n\pi$ is $n \left(1 + \frac{\pi^3}{24} \right)$ (C)

for a given $n \in N$

- (D) None of these
- If $f(x) = \begin{cases} \sqrt{\{x\}} \text{ for } x \notin Z \\ 1 \text{ for } x \in Z \end{cases}$ and $g(x) = \{x\}^2$ where $\{.\}$ denotes fractional part of x then area bounded (ii)

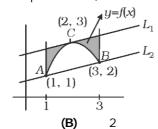
by f(x) and g(x) for $x \in (0, 6)$ is:

- (A)
- (B)
- (c) $\frac{10}{3}$
- Let S is the region of points which satisfies $y^2 < 16x$, x < 4 and $\frac{xy(x^2 3x + 2)}{x^2 7x + 12} > 0$, Its area is:

 (A) $\frac{8}{3}$ (B) $\frac{64}{3}$ (C) $\frac{32}{3}$ (D) None of these 212. (i)

- Given a function $f:[0,4] \to R$ is differentiable. Then for some $\alpha,\beta \in (0,2), \int_0^4 f(t)dt$ is equal to: (ii)
 - $f(\alpha^2) + f(\beta^2)$ (A)
- $2\alpha f(\alpha^2) + 2\beta f(\beta^2)$ (B)
- $\alpha f(\beta^2) + \beta f(\alpha^2)$ (C)
- (D) $f(\alpha) f(\beta) [f(\alpha) + f(\beta)]$

- **213.** (i) Let f(x) be a derivable function satisfying $f(x) = \int_{0}^{x} e^{t} \sin(x-t)dt$ and g(x) = f''(x) f(x) then the possible integers in the range of g(x) is:
 - (ii) The following figure shows the graph of a continuous function y = f(x) on the interval [1, 3]. The points A, B, C have coordinates (1, 1), (3, 2), (2, 3), respectively, and the lines L_1 and L_2 are parallel, with L_1 being tangent to the curve at C. If the area under the graph of y = f(x) from x = 1 to x = 3 is 4 square units, then the area of the shaded region is:



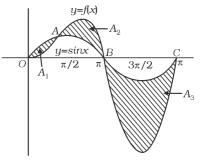
(A) 1 (B)

(C) 3 **(D)**

Paragraph for Question 214 (i)

In the following figure, the graphs of two functions y=f(x) and $y=\sin x$ are given. They intersect at origin, A(a, f(a)), $B(\pi, 0)$ and $C(2\pi, 0)$. $A_j(i=1, 2, 3)$ is the area bounded by the curves as shown in the figure, respectively, for $x\in(0, a)$, $x\in(a, \pi)$, $x\in(\pi, 2\pi)$.

If $A_1 = 1 + (a - 1)\cos a - \sin a$, then:



- (a) The function f(x) is:
 - (A) $x^2 \sin x$
- (B) $x \sin x$
- (C) $2x \sin x$
- **(D)** $x^3 \sin x$

- **(b)** The value of A_2 is:
 - (A) $(\pi 1) \text{ units}^2$

(B) $(\pi/2-1)$ units²

(C) $(\pi - \sin 1 - 1) \text{ units}^2$

- **(D)** $\pi/2 \text{ units}^2$
- (ii) If $\int_{0}^{\infty} x^{2n+1} e^{-x^2 dx} = 360$, then the value of *n* is ______
- 215. (i) The value of $2^{2010} \frac{\int_{0}^{1} x^{1004} (1-x)^{1004} dx}{\int_{0}^{1} x^{1004} (1-x^{2010})^{1004} dx}$ is_____
 - (ii) Let $J = \int_{-5}^{-4} (3 x^2) \tan(3 x^2) dx$ and $K = \int_{-2}^{-1} (6 6x + x^2) \tan(6x x^2 6) dx$. Then (J + K) equals _____