

Date Planned : / /	Daily Tutorial Sheet - 6	Expected Duration: 90 Min
Actual Date of Attempt ://	Level - 1	Exact Duration :

76. If
$$f(y) = e^y$$
, $g(y) = y$; $y > 0$ and $F(t) = \int_{0}^{t} f(t - y)g(y)dy$, then:

(A)
$$F(t) = 1 - e^{-1}(1+t)$$
 (B)

$$F(t) = e^{t} - (1+t)$$
 (C) $F(t) = te^{t}$

$$F(t) = te^{t}$$

(D)
$$F(t) = te^{-t}$$

$$\int_{0}^{x^{2}} (\tan^{-1} t) dt$$

77.
$$\lim_{x \to 0} \frac{\int_{0}^{x^{2}} (\tan^{-1} t) dt}{\int_{0}^{x} \sin \sqrt{t} \ dt}$$

*78. The point of extremum of
$$\int_0^{x^2} \frac{t^2 - 5t + 4}{2 + e^t} dt$$
 are:

$$\mathbf{B)} \qquad x = 1$$

(C)
$$x = 0$$

-1/2

(D)
$$X = -$$

*79. Let
$$f(x) = \int_0^x |x-1| dx$$
, $x \ge 0$. Then $f'(x)$ is:

(A) continuous at
$$x = 1$$

(B) continuous at
$$x = 2$$

(C) differentiable
$$x = 1$$

(D) differentiable at
$$x = 2$$

80. If
$$x = \int_{c^2}^{\tan t} \tan^{-1} z \, dz$$
, $y = \int_{n}^{\sqrt{t}} \frac{\cos(z^2)}{z} dz$ then $\frac{dy}{dx}$ is equal to: (where c and n are constants):

(A)
$$\frac{\tan}{2t}$$

$$\frac{\tan t}{2t} \qquad \text{(B)} \qquad \frac{\cos^2 t}{t^2} \qquad \text{(C)} \qquad \frac{\cos^3 t}{2t^2} \qquad \text{(D)} \qquad \frac{\tan t^2}{2t^2}$$

(C)
$$\frac{\cos^2}{2t^2}$$

(D)
$$\frac{\tan t^2}{2t^2}$$

81. Show that area bounded by ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 is πab .

- Show that the area in the first quadrant, enclosed by the x-axis, the line $x = \sqrt{3}y$ and the circle 82. $x^2 + v^2 = 4$ is $\pi/3$.
- Find the area bounded by the curves $x^2 = 4y$ and the straight line x = 4y 2. 83.
- Find the area common to the parabola $x = -2y^2$ and $x = 1 3y^2$. 84.
- Find the area bounded by the parabola $y = 2 x^2$ and the straight line y + x = 0. 85.
- Calculate the area enclosed by the parabola $y^2 = x + 3y$ and the Y-axis. 86.
- Prove that the area bounded by the parabolas $y^2 = 5x + 6$ and $x^2 = y$ is 81/15. 87.
- Find the area of the portion of the circle $x^2 + y^2 = 64$ which is exterior to the parabola $y^2 = 12x$. 88.
- AOB is the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in which OA = a and OB = b. Show that the area 89. between the chord AB and the arc AB of the ellipse is $\frac{1}{4}ab(\pi-2)$:
- Sketch the region bounded by the curves $y = x^2$ and $y = \frac{2}{1 + x^2}$. Find the area. 90.