

Date Planned ://	Daily Tutorial Sheet-15	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-3	Exact Duration :

For Question No. 159 - 164

- (A) Statement-I is True, Statement-II is True and Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True and Statement-II is NOT a correct explanation for Statement-I.
- (C) Statement-I is True, Statement-II is False.
- **(D)** Statement-I is False, Statement-II is True.
- **Statement : I** Heat of neutralization for both HNO₃ and HCl with NaOH is -57.3 kJ per mol⁻¹. **Statement : II** NaOH is a strong electrolyte/base.
- **160. Statement: I** The heat of neutralization of perchloric acid, HClO₄, with NaOH is same as that of HCl with NaOH.
 - **Statement : II** Both HCl and HClO₄ are strong acids.
- **161. Statement : I** The heat of ionization of water is equal of the heat of neutralization of strong acid with a strong base.
 - **Statement : II** Water ionizes to a very small extent while H^+ ions from an acid combine very rapidly with OH^- from a base to from H_2O ,
- **162. Statement: I** The enthalpy of formation of HCl is equal to the bond energy of HCl.
 - **Statement : II** The enthalpy of formation and the bond energy both involve formation of one mole of HCl from the elements.
- 163. An initial mixture of Fe_2O_3 and Al is used in solid rocket fuel. Calculate the fuel value per gram and per ml of mixture. $\Delta H_{Al_2O_3}$ = 399.0 kcal, $\Delta H_{Fe_2O_3}$ = 199.0 kcal, density of Fe_2O_3 and Al are 5.2 g/ml and 2.7 g/ml respectively.
 - (A) 0.9436 Kcal/g; 3.94 Kcal/ml (B) 0.82 Kcal/g; 4.9 Kcal/ml (C) 0.792 Kcal/g; 7.8 Kcal/ml (D) 0.98 Kcal/g; 3.16 Kcal/ml
- **164.** The heats of formation of PCl₃ and PH₃ are 306 kJ mole⁻¹ and +8 kJ mole⁻¹ respectively and the heats of atomization of phosphorus, chlorine and hydrogen are given by

$$\begin{array}{ll} P_{(s)} \rightarrow P_{(g)} & \Delta H = 314 \text{ kJ mole}^{-1} \\ Cl_2(g) \rightarrow 2Cl_g & \Delta H = 242 \text{ kJ mole}^{-1} \\ H_2(g) \rightarrow 2H_g & \Delta H = 433 \text{ kJ mole}^{-1} \end{array}$$

Calculate E_{P-Cl} and E_{P-H.}