

Date Planned : / /	Daily Tutorial Sheet-14	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-3	Exact Duration :

The total heat content of a system at constant pressure is known as it enthalpy. Mathematically it is the sum of internal energy and pressure volume energy H = E + PV. When the initial state of a system changes to final state reversibly at constant pressure the change in enthalpy (ΔH) and change in Internal energy (ΔE) are related by:

$$\Delta H = \Delta E + P\Delta V$$

 $\Delta H = \Delta E + \Delta nRT$

 Δn = Number of moles of gaseous products – Number of moles of gaseous reactants.

For the reactions involving only solids and liquids i.e., $\Delta n_{\sigma} = 0$

$$\Delta H \cong \Delta E$$

153. For the reaction $2CO(g) + O_2(g) \longrightarrow 2CO_2(g), \Delta H = -56 \text{ kJ/mol}$.

In one litre vessel at 500 K the initial pressure is 70 atm and after the reaction it becomes 40 atm at constant volume of one litre. The change in internal energy would be :

(A) $-70 \,\text{kJ} / \text{mol}$

(B) −40 kJ / mol

(C) -53 kJ / mol

(D) -80 kJ / mol

154. The enthalpy of fusion of ice is 6.0 kJ/mol. The heat capacity of water is $4.2 \, \mathrm{Jg^{-1}c^{-1}}$. What is the smallest number of ice cubes at 0°C each containing one mole of water that are needed to cool 500 g of liquid water from 20°C to 0°C?

(A)

- (B)
- **(C)** 14
- **(D)** 125

155. 5 moles of an ideal gas is expanded isothermally and reversibly from 1 litre to 100 litre at an another enthalpy change for the process is:

(A) 11.4 kJ

(B) −11.4 kJ

(C) 0 kJ

(D) 4.8 kJ

156. Calculate difference between ΔH and ΔU when 1 mole of grey tin (density = 5.75 g/cm³) changes to white tin (density = 7.13 g/cm³) at 10 bar. (at 298 k, ΔH = +2.1 kJ, at wt = 119 of Sn)

(A) -8.8 J

(B) −4.4 J

(C) $-2.2 \,\mathrm{J}$

(D) 4.4 J

157. $\Delta_f H^{\theta}$ of hypothetical MgCl is -125 kJ mol^{-1} and for MgCl₂ is -642 kJ mol^{-1} . The enthalpy of disproportionation of -49x. Find the value of x.

158. The enthalpy of solution of NaOH(s) in water is $-41.6\,\mathrm{kJ/mole}$. When NaOH is dissolved in water then the temperature of water :

(A) Decrease

(B) Increase

(C) Does not change

(D) Fluctuates