

Date Planned ://	Daily Tutorial Sheet-13	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-3	Exact Duration :

147.	The enthalpy of formation of hypothetical MgCl is -125	$5 \mathrm{kJ} \; \mathrm{mol}^{-1}$	and for	MgCl_2 is	$-642 \mathrm{kJ} \mathrm{mol}^{-1}$. What
	is enthalpy for the disproportionation of MgCl?				($oldsymbol{oldsymbol{eta}}$

(A) $392 \,\text{kJ mol}^{-1}$

(B) -392 kJ mol⁻¹

(C) -767 kJ mol^{-1}

- **(D)** -517 kJ mol^{-1}
- 148. At 298 K in a constant volume calorimeter, 0.01 mole of TNT was detonated when 8180 cals of heat was released. Each mole of TNT gives 6 moles of gaseous products on detonation. What is $\Delta H/mole$ of TNT exploded?
 - **(A)** 714 kcals mole⁻¹

(B) – 814 kcals mole⁻¹

(C) – 914 kcals mole⁻¹

- **(D)** None of the above
- **149.** The difference between heat of reaction at constant pressure and constant volume for the reaction given below at 25°C in kJ is

$$2 C_6 H_6 \left(\ell\right) + 15 O_2 \left(g\right) - \longrightarrow 12 C O_2 \left(g\right) + 6 H_2 O \left(\ell\right)$$

(A) -7.43

(B) +3.72

(C) - 3.72

- **(D)** 7.43
- **150.** $\Delta_f H^\theta$ of Cyclohexane (ℓ) and benzene at 25°C is -156 and +46 kJ mol⁻¹, respectively. $\Delta_{Hydrogenation} H^\circ$ of cyclohexene (ℓ) at 25°C is -119 kJ mol⁻¹
 - Resonance energy of benzene is found to be $-38 \text{ x kJ mol}^{-1}$. Find the value of x.
- **151.** Bond dissociation energy of XY, X_2 and Y_2 (all diatomic molecules) are in the ratio of 1 : 1: 0.5 and ΔH_f of XY is $-100 \, kJ \, mol^{-1}$. The bond dissociation energy of X_2 is 100x. Find the value of x.
- **152.** The lattice energy of solid KCl is $181 \text{ kcal mol}^{-1}$ and the enthalpy of solution of KCl in H_2O is $1.0 \text{ kcal mol}^{-1}$ if hydration enthalpies of K^+ and Cl^- ions are in the ratio of 2:1 then the enthalpy of hydration of K^+ is -20x K cal mol^{-1} . Find the value of x.

28