

Date Planned : / /	Daily Tutorial Sheet-11	Expected Duration : 90 Min
Actual Date of Attempt : / /	Numerical Value Type	Exact Duration :

126. The magnitude of the difference between heat of reaction at constant pressure and constant volume for the reaction given below at 25° C in kJ is:

$$2C_6H_6(\ell) + 15O_2(g) \longrightarrow 12CO_2(g) + 6H_2O(\ell)$$

- **127.** The temperature of a 5 mL of strong acid increases by 5°C when 5 mL of a strong base is added to it. If 10 mL of each are mixed, temperature increase in deg celcius is:
- 128. Energy required to dissociate 4 g of gaseous hydrogen into free gaseous atoms is 208 kcal at 25° C. The bond energy of H H bond in kcal is :
- **129.** The value of ΔH° for the reaction $Cu^+(g) + I^-(g) \longrightarrow CuI(g)$ is $-446 \, kJ \, mol^{-1}$. If the ionisation energy of Cu(g) is $745 \, kJ \, mol^{-1}$ and electron gain enthalpy I(g) is $295 \, kJ \, mol^{-1}$, then the magnitude of ΔH° for the formation of one mole of CuI(g) from Cu(g) and I(g) is _____ kJ.
- 130. The standard heat for formation of $NO_2(g)$ and $N_2O_4(g)$ are 8.0 and $2.0 \, \text{kcal mol}^{-1}$ respectively. The magnitude of heat of dimerization of NO_2 in kcal is :
- 131. AB, A_2 and B_2 are diatomic molecules. If the bond enthalpies of A_2 , AB and B_2 are in the ratio 1:1:0.5 and the enthalpy of formation of AB from A_2 and B_2 is $-100 \, \text{kJ} \, \text{mol}^{-1}$, what is the bond enthalpy of A_2 in kJ?
- 132. Bond energies of (H-H), (O=O) and (O-H) are 105, 120 and 220 kcal/mol respectively, then magnitude of ΔH in the reaction in kcal is : $2H_2(g) + O_2(g) \longrightarrow 2H_2O(\ell)$
- 133. If, combustion of 4 g of CH_4 liberates 2.5 kcal of heat, the magnitude of heat of combustion of CH_4 in kcal is :
- 134. If $H_2(g) + Cl_2(g) \longrightarrow 2HCl$; $\Delta H^\circ = -44 \text{ kcal}$ (i) $2Na(s) + 2HCl(g) \longrightarrow 2NaCl(s) + H_2(g); \quad \Delta H = -152 \text{ kcal}$ (ii) $Na(s) + 0.5Cl_2(g) \longrightarrow NaCl(s); \quad \Delta H^\circ = -x \text{ kcal}$ (iii) $Magnitude \text{ of } x \text{ is} \underline{\hspace{1cm}}.$
- 135. Heat of combustion ΔH for $C(s), H_2(g)$ and $CH_4(g)$ are -94, -68 and -213 kcal/mole then magnitude of ΔH for $C(s) + 2H_2(g) \longrightarrow CH_4(g)$ in kcal is :
- **136.** Given the bond energies of $N \equiv N$, H H and N H bonds as 948, 436 and $391 \, kJ \, mol^{-1}$ respectively, the magnitude of enthalpy of the reaction, $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ in kJ is :
- 137. Heat evolved in the reaction, $H_2 + Cl_2 \longrightarrow 2HCl$ is 182 kJ. Bond energies of H H an Cl Cl are 430 and 242 kJ/mole respectively. The H Cl bond energy in kJ/mole is :

- 138. The heat of neutralization of a strong base and a strong acid is 57 kJ/mol. The magnitude of heat released when 0.5 mole of HNO_3 solution is added to 0.20 mole of NaOH solution, in kJ is:
- **139.** For the reaction, $X_2O_4(\ell) \longrightarrow 2XO_2(g)$ $\Delta U = 2.1 \, kcal, \, \Delta S = 20 \, cal \, K^{-1} \, at \, 300 \, \, K$ Hence, magnitude of ΔG is in kcal is :
- 140. The heat of combustion of carbon to CO_2 is $-393.5\,kJ/mol$. The magnitude of heat released upon formation of 35.2 g of CO_2 from carbon and oxygen gas in kJ.