

Thermochemistry

Date Planned : / /	Daily Tutorial Sheet	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-0	Exact Duration :

Very Short Answer Type (1 Mark)

- 1. The heat of combustion of benzene in a bomb calorimeter (i.e., constant volume) was found to be $3263.9\,\mathrm{kJ}~\mathrm{mol}^{-1}$ at $25^{\circ}\mathrm{C}$. Calculate the heat of combustion of benzene at constant pressure.
- 2. The molar heat of formation of NH $_4$ NO $_3$ (s) is $-367.54\,\mathrm{kJ}$ and those of N $_2$ O(g) and H $_2$ O(ℓ) are +81.46 and $-285.78\,\mathrm{kJ}$ respectively at 25°C and 1.0 atmospheric pressure. Calculate ΔH and ΔU for the reaction.
- 1 g of graphite is burnt in a bomb calorimeter in excess of oxygen at 298 K and 1 atmospheric pressure according to the equation $C(graphite) + O_2(g) \longrightarrow CO_2(g)$. During the reaction, temperature rises from 298 K to 299 K. If the heat capacity of the bomb calorimeter is 20.7 kJ/K, what is the enthalpy change for the above reaction at 298 K and 1 atm?
- 4. Calculate the enthalpy of hydration of anhydrous copper sulphate ($CuSO_4$) into hydrated copper sulphate ($CuSO_4 \cdot 5H_2O$). Given that the enthalpies of solution of anhydrous copper sulphate and hydrated copper sulphate are -66.5 and +11.7 kJ mol⁻¹ respectively.
- **5.** Calculate the standard enthalpy of formation of SO_3 at 298 K using the following reactions and enthalpies.

$$S_8(s) + 8O_2(g) \longrightarrow 8SO_2(g), \Delta H^{\circ} = -2775 \text{ kJ mol}^{-1};$$

 $2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g), \Delta H^{\circ} = -198 \text{ kJ mol}^{-1}$

- **6.** From the following data at 25°C, calculate the bond energy of O H bond:
 - (i) $H_2(g) \longrightarrow 2H(g), \Delta H_1 = 104.2 \text{ kcal}$
- (ii) $O_2(g) \longrightarrow 2O(g)$, $\Delta H_2 = 118.4 \text{ kcal}$
- (iii) $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(g), \Delta H_3 = -57.8 \text{ kcal}$

Short Answer Type-I (2 Marks)

- 7. A 1.250 g sample of Octane (C_8H_{18}) is burned in excess of oxygen in a bomb calorimeter. The temperature of the calorimeter rises from 294.05 K to 300.78 K. If heat capacity of the calorimeter is 8.93 kJ/K, find the heat transferred to the calorimeter. Also calculate the enthalpy combustion of the sample of octane.
- 8. 0.16 g of methane was subjected to combustion at 27°C in a bomb calorimeter system. The temperature of the calorimeter system (including water) was found to rise by 0.5°C. Calculate the heat of combustion of methane at (i) constant volume, and (ii) constant pressure. The thermal capacity of the calorimeter system is $17.7 \, \text{kJ} \, \text{K}^{-1} (\text{R} = 8.314 \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1})$

- **9.** Calculate enthalpy of formation of methane (CH_4) from the following data:
 - (i) $C(s) + O_2(g) \longrightarrow CO_2(g), \Delta_r H^\circ = -393.5 \text{ kJ mol}^{-1}$

(ii)
$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(\ell), \ \Delta_r H^\circ = -285.8 \,\text{kJ mol}^{-1}$$

(iii)
$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(\ell), \Delta_r H^\circ = -890.3 \text{ kJ mol}^{-1}$$

- 10. Ethylene on combustion gives carbon dioxide and water. Its enthalpy of combustion is $1410.0\,\mathrm{kJ}$ / mol. If the enthalpy of formation of CO_2 and $\mathrm{H}_2\mathrm{O}$ are $-393.3\,\mathrm{kJ}$ and $-286.2\,\mathrm{kJ}$ respectively, calculate the enthalpy of formation of ethylene.
- 11. Calculate the enthalpy of formation of sucrose $(C_{12}H_{22}O_{11})$ from the following data:

(i)
$$C_{12}H_{22}O_{11} + 12O_2 \longrightarrow 12CO_2 + 11H_2O$$
, $\Delta H = -5200.7 \text{ kJ mol}^{-1}$

(ii)
$$C + O_2 \longrightarrow CO_2$$
, $\Delta H = -394.5 \text{ kJ mol}^{-1}$

(iii)
$$H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$$
, $\Delta H = -285.8 \text{ kJ mol}^{-1}$

- Compare quantity of heat produced by the combustion of 1.0 g glucose ($C_6H_{12}O_6$) with that produced by 1.0g sucrose ($C_{12}H_{22}O_{11}$). Given that the standard heats of formation of CO_2 , H_2O glucose and sucrose are -393.5, -285.9, -1260 and -2221 kJ mol⁻¹ respectively.
- 13. (a) Is the bond energy of all the four C-H bonds in CH₄ molecule equal? If not then why? How is the C-H bond energy then reported?
 - (b) Same mass of diamond and graphite (both being carbon) are burnt in oxygen. Will the heat produced be same or different? Why?
 Give reasons for the following:

Short Answer Type-II (3 Marks)

- Calculate the bond energy of C-H bond, given that the heat of formation of CH_4 , heat of sublimation of carbon and heat of dissociation of H_2 are -74.8+719.6 and $435\,\mathrm{kJ}$ mol $^{-1}$ respectively.
- 15. Use the following data to calculate $\Delta_{lattice}H^o$ for NaBr. $\Delta_{sub}H^o$ for sodium metal = 108.4 kJ mol⁻¹, ionization enthalpy of sodium = 496 kJ mol⁻¹, electron gain enthalpy of bromine = -325 kJ mol⁻¹, bond dissociation enthalpy of bromine = 192 kJ mol⁻¹, $\Delta_f H^o$ for NaBr(s) 360.1 kJ mol⁻¹.
- Show that the reaction $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$ at 300 K is spontaneous and exothermic, when the standard entropy change is -0.094 kJ mol⁻¹ K⁻¹. The standard Gibbs energies of formation for CO_2 and CO are -394.4 and -137.2 kJ mol⁻¹, respectively.
- 17. The heat of neutralization of (i) $CHCl_2 COOH$ by NaOH is 12830 cal, (ii) HCl by NaOH is 13680 cal and (iii) NH_4OH by HCl is 12270 cal. What is the heat of neutralization of dichloro acetic acid by NH_4OH ? Calculate the heats of ionization of dichloro acetic acid and NH_4OH .

- A natural gas may be assumed to be a mixture of CH_4 and C_2H_6 only. On complete combustion of 10 L of the gas at STP, the heat evolved was 474.6 kJ. Assuming $\Delta H_{c(CH_4)} = -894$ kJ/mol and $\Delta H_{c(C_2H_6)} = -1560$ kJ/mole. Calculate the % by volume of each gas in the mixture.
- 19. The enthalpy of evaporation of water at 373 K is 40.67 kJ mol⁻¹. What will be the enthalpy of evaporation at 353 K and 393 K if average molar heats at constant pressure in this range for water in liquid and vapour states are 75.312 and 33.89 JK⁻¹ mol⁻¹ respectively?

Long Answer Type (5 Marks)

- **20.** Classify the following processes as exothermic or endothermic.
 - **(A)** Burning of match stick
 - **(B)** Melting of ice
 - (C) Molten metal solidifies
 - **(D)** Reaction between Na and H₂O
 - (E) Rubbing alcohol evaporates
- **21.** Using the data (all value in kilocalories per mole at 25°C) given below. Calculate the bond energy of C C and C H bonds.

$$\Delta H^{0}$$
 C (Ethane) = -372

$$\Delta H^{o}_{C \text{ (Propane)}} = -530$$

$$\Delta H$$
 C (Graphite) - C(g) = 172

Bond energy of H - H = 104

$$\Delta H_{f H_{2}O(1)}^{o} = -68$$

$$\Delta H_f^{o}_{CO_{2(g)}} = -94$$

22. Using the data given below (all values are in kcal mol⁻¹ at 25°C), calculate the bond energies of C—C and C—H bonds.

$$\Delta H^{0}$$
 (combustion) of ethane = -372.0

$$\Delta H^{\circ}$$
 (combustion) of propane = -530.0

$$\Delta H^0$$
 for C(s) \longrightarrow C(g) = 172.0

Bond energy of H—H bond = 104.0

$$\Delta_{\rm f} {\rm H}^{\rm o}$$
 of ${\rm H_2O} = 68.0$; $\Delta_{\rm f} {\rm H}^{\rm o}$ of ${\rm CO_2}(g) = -94.0$

Standard enthalpy of formation of $C_3H_7NO_2(s)$, $CO_2(g)$ and $H_2O(l)$ are 133.57, -94.05, and -68.32 kcal mol⁻¹ respectively. Standard enthalpy of combustion of CH_4 at $25^{\circ}C$ is -212.8 kcal mol⁻¹. Calculate ΔH° for the reaction:

$$2CH_4 + CO_2 + \frac{1}{2}N_2 \longrightarrow C_3H_7NO_2(s) + \frac{1}{2}H_2$$

Calculate ΔU for combustion of $C_3H_7NO_2(s)$.

24. Whenever an acid is neutralized by a base, the net reaction is

$$H^{\oplus}(aq) + \bar{O} H(aq) \longrightarrow H_2O(l); \Delta H = -57.1 \text{ kJ}$$

Calculate the heat evolved for the following experiments?

- (a) 0.50 mol of HCl solution is neutralized by 0.50 mol of NaOH solution.
- (b) $0.50 \text{ mol of } \text{HNO}_3 \text{ solution is mixed with } 0.30 \text{ mol of KOH solution}$
- (c) 100 mL of 0.2 M HCl is mixed with 100 mL of 0.3 M NaOH solution
- (d) $\rm 400~mL~of~0.2~M~H_2SO_4$ is mixed with 600 mL of 0.1 M KOH solution
- **25.** The standard entropy change for reaction $CO(g) + \frac{1}{2}(O_2) \longrightarrow CO_2(g)$ at 300 K is $-0.094 \text{ kJ mol}^{-1} \text{ K}^{-1}$. The standard Gibb's free energies of formation of CO_2 and CO are -394.4 and $-137.2 \text{ kJ mol}^{-1}$ respectively. What is effect of temperature on spontaneity of reaction?

VMC | Thermochemistry 4 DTS | Level-0