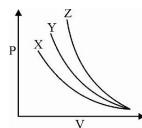


Date Planned ://	Daily Tutorial Sheet-14	Expected Duration : 90 Min
Actual Date of Attempt ://	Level-3	Exact Duration :


153. P-V plot for three gases (assuming ideal behaviour and similar condition) for reversible adiabatic

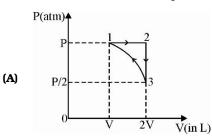
compression are given in the figure below:

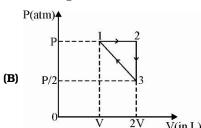
Plots X, Y and Z should correspond to respectively:

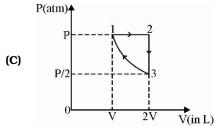
- (A) CO_2 , Cl_2 and Ne
- **(B)** SO_2 , N_2O and He
- (C) He, N_2 and O_3
- **(D)** NH₃, H₂S and Ar

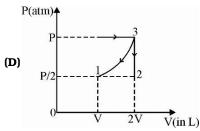
- **154.** An ideal gas at initial pressure P_i and volume V_i undergoes reversible expansion to the same volume V_i , either isothermally or adiabatically. Consider the following statements:
 - 1. $|P_f (adiabatic)| < |P_f (isothermal)|$
- **2.** |W(adiabatic)| < |W(isothermal)|
- 3. $|T_f(adiabatic)| < |T_f(isothermal)|$
- **4.** | q(adiabatic) | < | q(isothermal) |

where the symbols have their usual meaning.

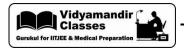

How many statements of the above are correct?


- (A) Only one
- (B) Only two
- (C) Only three
- **(D)** All
- **155.** Two moles of an ideal gas undergo the following process:




- a. a reversible isobaric expansion from (P atm, V L) to (P atm, 2V L)
- b. a reversible isochoric change of state from (P atm, 2V L) to (P/2 atm, 2V L)
- c. a reversible isothermal compression form (P/2 atm, 2V L) to (P atm, V L)

Sketch with labels each of the process on the same P - V diagram



- 156. Calculate the final pressure of a sample of carbon dioxide that expands reversibly and adiabatically from 57.4 kPa and 1.0 L to a final volume of 2.0 L. Take $\gamma = 1.4$.
 - (A) 1 KPa
- **(B)** 10 kPa
- (C) 20 KPa
- **(D)** 22 kPa

- 157. The heat evolved from the combustion of carbon is used to heat water. Assuming 50% efficiency, calculate mole of water vaporized at its boiling point if $\Delta H_f(CO_2) = -94 \text{ Kcal / mol}$ and $\Delta H_{vap}(H_2O) = 9.6 \text{ kcal / mol}$ and 6g C is undergoing combustion.
 - (A) 1.21 mole (B) 2.42 mole (C) 4.89 mole (D) 9.7 mole
- *158. If w_1 , w_2 , w_3 and w_4 are work done in isothermal, adiabatic, isobaric, and isochoric reversible expansion for an ideal gas, respectively, then
 - (A) $w_3 > w_1$ (B) $w_1 > w_2$ (C) $w_2 > w_4$ (D) $w_4 > w_2$