

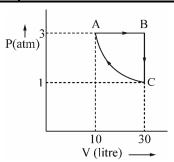
Date Planned ://	Daily Tutorial Sheet-12	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-3	Exact Duration :

Paragraph for Question No. 141 to 143

 \odot

1 mole of an ideal gas undergoes different thermodynamic process in P-V diagram shown as below :

Assume all the steps are reversible (R = 0.08 litre atm mol^{-1} , $\log 3 = 0.5$, R = $8 \text{ JK}^{-1} \text{mol}^{-1}$)



Choose the correct answer:

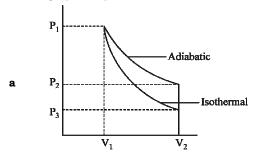
- **141.** What will be net amount of work done in atm litre during the entire thermodynamics process as shown in the above diagram?
 - **(A)** -94.5
- **(B)** +94.5
- **(C)** 50
- **(D)** -25.45

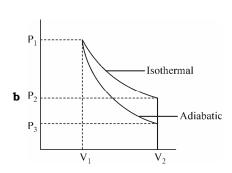
- **142.** What will be the temperature at A and point *C*?
 - (A) 375 K, 375 K
- 600 K, 600 K
- (C) 750 K, 750 K
- **(D)** 1500 K, 1500 K
- **143.** What will the value of ΔU and ΔH be for overall process?
 - **(A)** 15, 0.01
- **(B)** 0, 0
- **(C)** 10, 0.02
- **(D)** 8, 2

Paragraph for Question No. 144 - 146

A sample of ideal gas undergoes isothermal expansion in a reversible manner from volume V_1 to volume V_2 . The initial pressure is P_1 and the final pressure is P_2 . The same sample is then allowed to undergo reversible expansion under adiabatic conditions from volume V_1 to V_2 . The initial pressure being same but final pressure is P_2 .

144. Which graphic representation is **CORRECT**?





145. If P_3 and P_2 are equal, then

(A) $V_{2(adi)} = V_{2(iso)}$

- **(B)** $V_{2(adia)} < V_{2(iso)}$
- (C) Both $V_{2(adi)} = V_{2(iso)} < V_1$
- **(D)** $V_{2(adi)} > V_{2(iso)}$
- **146.** Which relation is correct for adiabatic process $\left(\gamma = \frac{C_P}{C_V} \right)$?

- (A) $P_1 V_1 = P_2 V_3$
- **B)** $P_2V_1 = P_3V_2$
- (C) $P_1V_1^{\gamma} = P_2V_2^{\gamma}$
- $(\mathbf{D}) \qquad \frac{P_1}{P_2} = \left(\frac{V_2}{V_1}\right)^{\gamma \frac{1}{2}}$