

Date Planned ://	Daily Tutorial Sheet-9	Expected Duration : 90 Min	
Actual Date of Attempt : / /	Level-2	Exact Duration :	

*106	Which	of the	following	ie	(are)	correct2
TUO.	WHICH	or the	TOHOWINE	IS	tarei	correct:

- (A) Absolute value of heat content of the system can't be determined using calorimetry
- **(B)** Absolute value of entropy can't be known
- Absolute value of internal energy can't be known (C)
- (D) Absolute value of Gibbs energy can't be determined

*107. When ice melts at 1°C:

- (A) an increase in entropy
- (B) a decrease in enthalpy
- (C) a decrease in free energy
- (D) process is spontaneous
- 108. The standard enthalpy of formation of $H_2O(g)$ at $298 \,\mathrm{K}$ is $-241.8 \,\mathrm{kJ}$ mol⁻¹. Calculate $\Delta_r H^o$ at 373 K. Assume that C_p is independent of temperature. C_p , $H_2O(g) = 33.6 \, \text{JK}^{-1} \, \text{mol}^{-1}$; C_p , $H_2(g) = 28.8 \, \text{mol}^{-1}$ $JK^{-1} mol^{-1}$, $C_p of O_2(g) = 29.4 JK^{-1} mol^{-1}$
 - (A) $-242.6\,\mathrm{kJ}$ / mol

(B) +242.6 kJ / mol

(C) $+24.26 \, kJ \, / \, mol$

- (D) -242.6 J / mol
- 109. Which substance in each of the following pairs would you expect to have the higher standard molar lacksquareentropy?
 - I. $C_2H_2(g)$ or $C_2H_6(g)$
- $CO_2(g)$ or CO(g)II.
- III. $I_2(s)$ or $I_2(g)$

The correct choice is:

- (A) $C_2H_2(g)$, $CO_2(g)$, $I_2(s)$
- **(B)** $C_2H_6(g)$, $CO_2(g)$, $I_2(s)$
- $C_2H_2(g)$, $CO_2(g)$, $I_2(g)$ (C)
- (D) $C_2H_6(g)$, $CO_2(g)$, $I_2(g)$
- $\Delta_r H^o \text{ for solid-to-liquid transition for proteins A and B are } 2.73 \, \text{kcal mol}^{-1} \text{ and } 3.03 \, \text{kcal mol}^{-1}.$ The two 110. melting points are 0°C and 30°C respectively. The entropy changes ΔS_A and ΔS_B at two transition temperatures are related as:
 - (A)

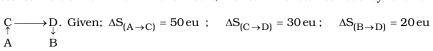
- $\Delta S_{A} = \Delta S_{B}$ (B) $\Delta S_{A} < \Delta S_{B}$ (C) $\Delta S_{A} > \Delta S_{B}$ (D) $\Delta S_{B} = \frac{303 \Delta S_{A}}{273}$
- For the auto-ionization of water at 25° C, K_{eq} for $H_2O(\ell) \rightleftharpoons H^+(aq) + OH^-(aq)$ is 10^{-14} . What is 111. $\Delta_r G^o$ for the above reaction?
 - $\approx 8 \times 10^4 \text{ J}$ (A)

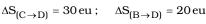
 $\approx 3.5 \times 10^4 \text{ J}$ **(B)**

 $\approx 10^4 \text{J}$ (C)

- (D) None of these
- 112. For a particular reversible reaction at temperature T, ΔH and ΔS were found to be both +ve. If $T_{\rm e}$ is the temperature at equilibrium, the reaction would be spontaneous when:
 - $T_e > T$ (A)

 $T > T_e$ **(B)**


(C) T_e is 5 times T (D) $T = T_e$



113. Which of the following reaction define ΔG_f° ?

- (A)
- $C(\text{diamond}) + O_2(g) \longrightarrow CO_2(g) \qquad \qquad \textbf{(B)} \qquad \qquad \frac{1}{2}H_2(g) + \frac{1}{2}F_2(g) \longrightarrow HF(g)$
- $H_4P_2O_7 + H_2O \longrightarrow 2H_3PO_4$ (C)
- (D) $SO_2(g) + \frac{1}{2}O_2(g) \longrightarrow SO_3(g)$
- The direct conversion of A of B is difficult, hence it is carried out by the following shown path 114.

Where eu is entropy unit, then $\Delta S_{(A \to B)} is$:

- (A) +100 eu
- +60 eu
- (C) -100 eu
- (D) -60 eu
- A schematic plot of $\ln K_{\rm eq}\,$ versus inverse of temperature for a reaction is shown below : 115.

The reaction must be:

- (A) Highly spontaneous at ordinary temperature
- **(B)** One with negligible enthalpy change
- (C) Endothermic
- **(D)** Exothermic

