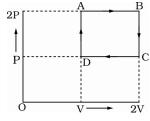


Date Planned : / /	Daily Tutorial Sheet-7	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-2	Exact Duration :

86. What will be the entropy change when two moles of an ideal gas expand reversibly from initial volume of 1 litre to 10 litre at constant temperature of 300 K?

(B) $38.27 \,\mathrm{JK}^{-1} \mathrm{mol}^{-1}$


(C) $11.48 \text{kJK}^{-1} \text{mol}^{-1}$

(D) $5.74 \, \text{kJK}^{-1} \text{mol}^{-1}$

Paragraph for Question No. 87 - 89

 \odot

The state of a mole of an ideal gas changed from state A at pressure 2P and volume V follows four different processes and finally returns to initial state A reversibly as shown below in the graph. By interpreting the graph, answer the following questions.

87. Which is the kind of process followed from state A to state B?

(A) Isochoric expansion

(B) Isobaric expansion

(C) Isothermal reversible expansion

(D) Isothermal irreversible compression

88. In state D to state A, what kind of process is followed?

(A) Isobaric expansion

(B) Isobaric compression

(C) Isochoric process

(D) Isothermal compression

89. What would the be total work done by the gas?

(A) –PV

(B) PV

(C) 0

(D) None of these

90. What would be the work done in state B to C?

 \odot

(A) –PV

(B) PV

(C) 2PV

(D) Zero

91. What would be the heat absorbed by the system in this cyclic process?

(A) –2PV

(B) Zero

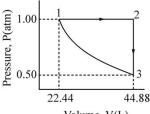
(C) 2PV

(D) PV

Paragraph for Question No. 92 - 95

•

A sample consisting of 1 mole of a mono-atomic perfect gas $\left(C_V = \frac{3}{2}R\right)$ is taken through the cycle as shown.


92. Temperature at points (1), (2), and (3), respectively is:

(A) 273 K, 546 K, 273 K

(B) 546 K. 273 K. 273 K

(C) 273 K, 273 K, 273 K

(D) 546 K, 546K, 273 K

93. ΔH for the overall cycle is:

(A) $+5.67 \times 10^3 \text{ J}$

(B) $-5.67 \times 10^3 \text{ J}$

(C) $-11.34 \times 10^3 \text{ J}$

(D) zero

Volume, V(L)

94. ΔU for the process $(1 \rightarrow 2)$ is:

(A) 0.00J

(B) $+3.40 \times 10^3 \text{ J}$

(C) -3.40 J

(D) $-3.40 \times 10^3 \text{ J}$

95. ΔU for the process $(2 \rightarrow 3)$ is:

 \odot

(A) 0.00 J

(B) +3.40 kJ

(C) $-3.40 \,\mathrm{kJ}$

(D) None of these