

Date Planned : / /	Daily Tutorial Sheet-6	Expected Duration : 90 Min	
Actual Date of Attempt : / /	Level-2	Exact Duration :	

- ***76**. Which of the following regarding the said processes is (are) correct?
 - (A) Expansion of an ideal gas against vaccum is always reversible
 - (B) A spontaneous process is always irreversible
 - In a reversible thermodynamic process, system always remains in equilibrium with (C) surroundings
 - (D) If a system containing ideal gas in a piston undergoes isothermal expansion from a given initial state to the same final volume, the surroundings loses more heat if expansion is carried out irreversibly rather reversibly
- **77**. Match the following:

Column I		Column II	
(A)	Isothermal processes	(1)	$\Delta U = 0$
(B)	Reversible adiabatic process	(2)	$\Delta H = 0$
(C)	Cyclic process	(3)	$\Delta S = 0$
(D)	Isochoric process	(4)	$\mathbf{w} = 0$

- 78. A gas expands isothermally against a constant external pressure of 1 atm from a volume of $10\,\mathrm{dm}^3$ to a volume of $20\,\mathrm{dm}^3$. It absorbs 800 J of thermal energy from its surroundings. The ΔU is :
 - 312 J (A)
- (B) + 123 J
- (C) -213 J
- (D) + 231 J
- **79**. In which of the following reactions, the enthalpy is the least?
 - (A) $CH_3COOH + NaOH \longrightarrow CH_3COONa + H_2O$
 - $HCl + NH_4OH \longrightarrow NH_4Cl + H_2O$ (B)
 - $HCl + NaOH \longrightarrow NaCl + H_2O$ (C)
 - $HCN + NH_4OH \longrightarrow NH_4CN + H_2O$ (D)
- Molar entropy change is 16 J mol⁻¹ K⁻¹, the boiling points of the liquid is if molar heat of vaporization is 80. lacksquare6 kJ/mol:
 - (A)
- (B) 375 K
- (C) 273 K
- (D) 102°C
- For the reaction of one mole zinc dust with one mole sulphuric acid in a bomb calorimeter, ΔU and w 81. correspond to:
 - (A) $\Delta U < 0, w = 0$ **(B)**
- $\Delta U < 0, w < 0$ (C)
- $\Delta U > 0, w > 0$ (D)
- $\Delta U > 0$, w > 0
- 82. Assuming that, water vapour is an ideal gas, the internal energy change (AU) when 1 mol of water is vaporized at 1 bar pressure and 100°C, (given : molar enthalpy of vaporized of water at 1 bar and $373 \text{ K} = 41 \text{ kJ mol}^{-1} \text{ and } \text{ R} = 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \text{)} \text{ will be}$: (\mathbf{I})
 - $41.00 \, kJ \, mol^{-1}$ (A)

 $4.100 \, \text{kJ mol}^{-1}$ (B)

 $3.7904 \text{ kJ mol}^{-1}$ (C)

 $37.904 \text{ kJ mol}^{-1}$ (D)

(A)

*84.

83.	A sample of oxygen gas expands its volume from 3 litre to 5 litre against a constant pressure of	f 3 atm. If
	the work done during expansion is used to heat 10 mole of water initially present at 290 K	t, its final
	temperature will be: (Specific heat capacity of water = 4.184 JK ⁻¹ g ⁻¹)	\odot

(C)

298.0 K

(D)

293.7 K

- (B) P and Q are arbitrarily chosen intensive variables then:
 - (P + Q) is extensive property **(B)** P/Q is an intensive variable
 - $\frac{dP}{dQ} \ \ is \ an \ intensive \ property$ (D) (C) PQ is an intensive variable
- *85. $\Delta E = 0$ for which process

292.0 K

- (A) Cyclic process (B) Isothermal expansion
- (C) Isochoric process (D) Adiabatic process

290.8 K

VMC | Thermodynamics DTS-6 | Level-2 52