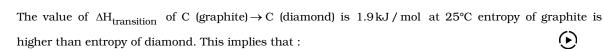

Date Planned ://	Daily Tutorial Sheet-5	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-1	Exact Duration :

- *61. Which of the following process is (are) expected to be spontaneous at higher temperature but non-spontaneous at lower temperature?
 - (A) $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$
 - (B) $H_2(g) \Longrightarrow 2H(g)$
 - $CO_2(s) + C(s) \rightleftharpoons 2CO(g)$ [$\Delta H_{f, m}^{\Theta} : CO_2 = -394 \text{ kJ/mol}, CO = -212 \text{ kJ/mol}$] (C)
 - $Na(s) \longrightarrow Na^+(g) + e^-$ (D)
- Which of the plots of $\ln K vs \left(\frac{1}{T}\right)$ is/are correct? *62.



*63.

- C (diamond) is more thermodynamically stable than C (graphite) at 25°C (A)
- **(B)** C (graphite) is more thermodynamically stable than C (diamond) at 25°C
- (C) Diamond will provide more heat on complete combustion at 25°C
- $\Delta G_{transition}$ of C (diamond) \rightarrow C (graphite) is -ve **(D)**
- 64. Among the following, the state function(s) is (are):
 - (A) Internal energy

- (B) Molar enthalpy
- (C) Reversible expansion work
- (D) Irreversible expansion work
- **65**. For an endothermic reaction, where ΔH represents the enthalpy of the reaction in kJ/mol, the minimum value for the energy of a activation will be:
 - (A) less than ΔH (C) more than ΔH (D) equal to ΔH zero
- 66. Match the following:

Column I		Column II	
(A)	$CO_2(g) + C(s) \longrightarrow 2CO(g)$	(1)	$\Delta_{\mathbf{r}} \mathbf{S} > 0$
	$[\Delta_f H^0 : CO_2 = -394 \text{ and } CO = -220 \text{ kJ / mol}]$		
(B)	$SO_2Cl_2(g) \longrightarrow SO_2(g) + Cl_2(g)$	(2)	$\Delta_r H > \Delta_r U$
(C)	$CO(g) + Cl_2(g) \longrightarrow COCl_2(g)$	(3)	$\Delta_r H < \Delta_r U$
(D)	$Cl_2(g) \longrightarrow 2Cl(g)$	(4)	$\Delta_{\mathbf{r}}G > 0$

67. Match the Column:

Column I		Column II	
(A)	H ⁺ (aq)	(1)	$\Delta_{\mathbf{f}} \mathbf{H}^{\circ} = 0$
(B)	H(g)	(2)	$\Delta_{f}H^{\circ}\neq0$
(C)	H ₂ (g)	(3)	$\Delta_f G^\circ = 0$
(D)	C(s, diamond)	(4)	$\Delta_f S^{\circ} < 0$

68. For the gas phase reaction, $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$

Which of the following conditions are correct:

(A) $\Delta H < 0 \text{ and } \Delta S < 0$

(B) $\Delta H > 0 \text{ and } \Delta S < 0$

(C) $\Delta H = 0 \text{ and } \Delta S < 0$

(D) $\Delta H > 0 \text{ and } \Delta S > 0$

69. The Haber's process for production of ammonia involves the equilibrium :

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

Assuming ΔH° and ΔS° for the reaction do not change with temperature, which of the statements is true? ($\Delta H^{\circ} = -95 \, \text{kJ}$ and $\Delta S^{\circ} = -190 \, \text{JK}^{-1}$)

- (A) Ammonia dissociates spontaneously below 500 K
- **(B)** Ammonia dissociates spontaneously above 500 K
- **(C)** Ammonia dissociates at all temperatures
- **(D)** Ammonia does not dissociates at any temperature

70. If gas, at constant temperature and pressure expands then it.

- (A) Entropy increases and then decreases
- (B) Internal energy increases
- **(C)** Internal energy remains the same
- **(D)** Internal energy decreases

71. Considering the reaction,

$$C(s) + O_2(g) \longrightarrow CO_2(g) + 393.5 \text{ kJ}$$

the signs of ΔH , ΔS and ΔG respectively are :

- **(A)** +, -, -
- **(B)** -, +, +
- (C) -, -,
- **(D)** -, +, -

72. Considering entropy(s) as a thermodynamic parameter, the criterion for the spontaneity of any process is:

- (A) $\Delta S_{system} + \Delta S_{surroundings} > 0$
- **(B)** $\Delta S_{\text{system}} \Delta S_{\text{surroundings}} > 0$

(C) $\Delta S_{system} > 0$ only

(D) $\Delta S_{\text{surroundings}} > 0$ only

73. Assuming ΔH° and S° do not change with temperature. Calculate, the boiling point of liquid A using the thermodynamic data given below:

Thermodynamic data	A (ℓ)	A(g)
$\Delta_{\rm f} {\rm H}^{\circ} ({\rm kJ / mol})$	-130	-100
$S^{\circ}(J \text{ K}^{-1} \text{ mol}^{-1})$	100	200

- (A) 300 K (B) 130 K (C) 150 K
- **(D)** 50 K

74. For a phase change : $H_2O(\ell) \rightleftharpoons H_2O(g)$ 0°C, 1 bar

$$\Delta G = 0$$

$$\Delta S = 0$$

(C)
$$\Delta H = 0$$

$$\Delta U = 0$$

75. For the process,

$$H_2O(\ell)(1 \text{ bar, } 373 \text{ K}) \longrightarrow H_2O(g)(1 \text{ bar, } 373 \text{ K})$$

(B)

The correct set of thermodynamic parameters is :

(A)
$$\Delta G = 0, \Delta S = +ve$$

(B)
$$\Delta G = 0, \Delta S = -ve$$

(C)
$$\Delta G = + ve, \Delta S = 0$$

(D)
$$\Delta G = -ve, \ \Delta S = +ve$$