

Date Planned : / /	Daily Tutorial Sheet-4	Expected Duration : 90 Min	
Actual Date of Attempt : / /	Level-1	Exact Duration :	

46.	A process is takin	ng place at constar	nt temperature and	pressure Ther	for ideal gas
4 0.	A process is taking	ig place at collistat	it temperature and	pressure, rifer	i iui iucai gas .

(A) $\Delta H = \Delta E$

 $\Delta H = T\Delta S$

(C)

 $\Delta H = 0$

(D) $\Delta S = 0$

47. In view of the signs of $\Delta_r G^{\circ}$ for the following reactions:

 $PbO_2 + Pb \longrightarrow 2PbO, \Delta_rG^{\circ} < 0;$

(B)

 $SnO_2 + Sn \longrightarrow 2SnO, \Delta_rG^{\circ} > 0$

Which oxidation states are more characteristic for lead and tin?

(A) For lead +4, for tin +2

(B) For lead +2, for tin +2

(C) For lead +4, for tin +4

(D) For lead +2, for tin +4

48. A plot of lnK against 1/T (abscissa) is expected to be a straight line with intercept on y coordinate axis equal to:

(A) $\frac{\Delta S^{\circ}}{2.303}$

(B)

(C) $-\frac{\Delta}{1}$

(D) $R \times \Delta S^{\circ}$

49. The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K_c is :

(A) $\Delta G = RT \ln K_c$

(B) $-\Delta G = RT \ln K_c$

(C) $\Delta G^{\circ} = RT \ln K_c$

(D) $-\Delta G^{\circ} = RT \ln K_c$

50. For the reaction at 298 K

1

 $A(g) + B(g) \rightleftharpoons C(g) + D(g)$; $\Delta H^{\circ} = -29.8 \text{ kcal}$, $\Delta S^{\circ} = -0.100 \text{ kcal } K^{-1}$

What is the value of ΔG° ?

(A)

(B)

(C)

(D)

(D)

51. Unit of entropy is:

(A)

 $JK^{-1} \text{ mol}^{-1}$

(B)

(C)

 $J^{-1}K^{-1} \text{ mol}^{-1}$

 $JK \text{ mol}^{-1}$

52. For a system in equilibrium, $\Delta G = 0$ under conditions of constant :

(A) Temperature and pressure

(B) Temperature and volume

(C) Pressure and volume

(D) Energy and volume

53. The entropy change for the reaction $H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$ will be :

 $\rm J\,mol^{-1}$

[Given that, $S^{\circ}(HCl) = 187 \text{ JK}^{-1} \text{ mol}^{-1}$, $S^{\circ}(H_2) = 131 \text{ JK}^{-1} \text{ mol}^{-1}$ and $S^{\circ}(Cl_2) = 223 \text{ JK}^{-1} \text{ mol}^{-1}$]

(A) $20 \,\mathrm{JK}^{-1} \,\mathrm{mol}^{-1}$

(B) $-20 \,\mathrm{JK}^{-1} \,\mathrm{mol}^{-1}$

(C) $167 \,\mathrm{JK}^{-1} \,\mathrm{mol}^{-1}$

(D) $-167 \,\mathrm{JK}^{-1} \,\mathrm{mol}^{-1}$

54. The free energy for a reaction having $\Delta H = 31400 \, \text{cal}$, $\Delta S = 32 \, \text{cal} \, \text{K}^{-1} \text{mol}^{-1}$ at $1000 \, ^{\circ} \text{C}$ is :

(A) -9336 cal

(B) -7386 cal

(C) –1936 cal

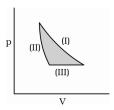
(D) +9336 cal

55. Spontaneous adsorption of a gas on solid surface is an exothermic process because :

(A) ΔH increases for system

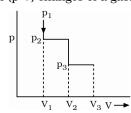
(B) ΔS increases for gas

(C) ΔS decreases for gas


(D) ΔG increases for gas

- **56.** The enthalpy change for the transition of liquid water to steam is $40.8 \, \text{kJ mol}^{-1}$ at 373 K. What is the entropy of vaporization of water in J/mol K?
 - **(A)** 209.4
- **(B)** 109.4
- **(C)** 250.0
- **(D)** -209.4

- **57.** Which of the following statements is true?
 - (A) ΔG is always less than ΔH
 - **(B)** ΔG is always more than ΔH
 - (C) ΔG is always proportional to ΔH
 - (D) ΔG may be lesser, greater or equal to ΔH
- **58.** In a reversible process, $\Delta S_{system} + \Delta S_{surrouding}$ is :
 - **(A)** > 0
- **(B)** < 0
- **(C)** ≥0
- $(\mathbf{D}) = 0$


59. Consider the following cyclic process

I : Isothermal II : Adiabatic III : constant-pressure process

Sum of the work and heat in the above is:

- (A) zero
- **(B)** pV
- (C) R
- **(D)** –pV
- **60.** The following diagram represents the (p-V) changes of a gas. Thus, total work done is :

- (A) $p_2(V_2 V_1) + p_3(V_3 V_2)$
- **(B)** $p_1(V_2 V_1) + p_3(V_3 V_2)$
- (C) $p_2(V_3 V_1) + p_3(V_2 V_1)$
- **(D)** $p_2(V_3 V_2) + p_3(V_2 V_1)$