

Date Planned ://	Daily Tutorial Sheet-11	Expected Duration : 90 Min
Actual Date of Attempt : / /	Numerical Value Type	Exact Duration :

- 126. One mole of an ideal gas for which C_v = 3R/2 is heated irreversibly at a constant pressure of 1 atm from $25^{\circ}C$ to $100^{\circ}C$. Calculate ΔU .
- **127.** The work done by a system is 8 joule, when 40 joule heat is supplied to it. Calculate the increase in internal energy of system.
- 128. A gas expands from $3\,dm^3$ to $5\,dm^3$ against a constant pressure of 3 atm. The work done during expansion is used to heat 10 mole of water of temperature 290 K. Calculate final temperature of water. Specific heat of water = $4.184 Jg^{-1}K^{-1}$.
- 129. An ideal monoatomic gas (C_v = 1.5R) initially at 298 K and $1.013 \times 10^6 Pa$ pressure expands adiabatically until it is in equilibrium with a constant external pressure of $1.013 \times 10^5 Pa$. Calculate the final temperature of gas.
- **130.** Calculate the change in entropy for the fusion of 1 mole of ice. The melting point of ice is 273 K and molar enthalpy of fusion for ice = $6.0 \, \text{kJ} \, \text{mol}^{-1}$.
- **131.** A kettle containing 1kg of water is heated open to atmosphere until evaporation is complete. The work done during this process is :
- 132. 70 calories of heat is required to raise the temperature of 2 mole of ideal gas at constant pressure from 30°C to 35°C . The amount of heat required to raise the temperature of same gas through 30°C to 35°C at constant volume is :
- 133. One mole of an ideal gas at 300K is expanded isothermally from an initial volume of 1 litre to 10 litre. The ΔU for this process is : $(R = 2 \operatorname{cal} K^{-1} \operatorname{mol}^{-1})$
- 134. 2 mole of ideal gas at 27° C temperature is expanded reversibly from 2 litre to 20 litre. Find entropy change: (R = 2 cal/mol K)
- 135. The molar heat capacity of water at constant pressure P, is $75 \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1}$. When 1.0 kJ of heat is supplied to 100g of water which is free to expand, the increase in temperature of water is :
- 136. One mole of an ideal gas at 300 K in thermal contact with surroundings expands isothermally from 1.0 L to 2.0L against a constant pressure of 3.0 atm. In this process, the change in entropy of surroundings (ΔS_{surr}) in $J K^{-1}$ is: (1Latm = 101.3J)
- **137.** How many times a diatomic gas should be expanded adiabatically to reduce its root mean square speed to half?
- **138.** What is ΔG for the reaction $X_2O_4(\ell) \longrightarrow 2XO_2(g)$; at 27°C. Given ΔU and ΔS are 2.1 k cal mol⁻¹ and 20 cal K^{-1} mol⁻¹.
- 139. The enthalpy of a system increases by 50 kJ when its internal energy is increased by 113 kJ. What is the pressure in k Nm^{-2} of the system if the volume of gas is reduced by 10^3m^3 at constant pressure?
- 140. A sample of argon gas at 1 atm pressure and 27°C expands reversibly and adiabatically from $1.25\,\text{dm}^3$ to $2.50\,\text{dm}^3$. Calculate the enthalpy change in this process $C_{v.m}$ for argon is $12.48\,\text{JK}^{-1}\,\text{mol}^{-1}$.