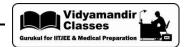


Date Planned ://	Daily Tutorial Sheet-1	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-1	Exact Duration :


Act	ual Date	e of Attempt :	_/_/.		Leve	l-1	Ex	act Duration :				
1.	The work done during the expansion of a gas from a volume of 4dm³ to 6dm³ against a constant external pressure of 3 atm is:											
	(A)	-6J	(B)	-608J	(C)	+304J	(D)	$-304\mathrm{J}$				
2.	In an	In an adiabatic process :										
	(A)	$p \cdot \Delta V = 0$	(B)	q = + W	(C)	$\Delta E = q$	(D)	q = 0				
3.	In an	In an isothermal process for ideal gas:										
	(A)	(A) $q = 0$ and $\Delta E = 0$			(B)	$q \neq 0$ and Δl	$q \neq 0$ and $\Delta E = 0$					
	(C)	$q = 0$ and Δ	E ≠ 0		(D)	$q \neq 0$ and Δ	E ≠ 0					
4.	A gas can expand from 100 mL to 250 mL under a constant pressure of 2 atm. The work done by gas is :											
	(A)	$30.38\mathrm{J}$	(B)	25 J	(C)	5 kJ	(D)	16 J				
5.	What is ΔE for system that does 500 cal of work on surrounding and 300 cal of heat is absorbed by the system?											
	(A)	-200 cal	(B)	-300 cal	(C)	$+200\mathrm{cal}$	(D)	+300 cal				
6.		For the reaction $A \rightarrow B$; $\Delta H = +24 kJ$ / mol and $B \rightarrow C$; $\Delta H = -18 kJ$ / mol ,the decreasing order of enthalpy of A, B, C follows the order:										
	(A)	A, B, C	(B)	B, C, A	(C)	C, B, A	(D)	C, A, B				
7.	The cooling in refrigerator is due to :											
	(A) Reaction of the refrigerator gas					B) Expansion	n of ice					
	(C)	(C) The expansion of the gas in the refrigerator (D) The work of the compressor										
8.	Heat required to raise the temperature of 1 mole of a substance by 1°C is called :											
	(A)	Specific heat		(B)	Molar heat c	apacity						
	(C)	C) Water equivalent				Specific grav	rity					
9.	An id	An ideal gas expands in volume from $1 \times 10^{-3} \text{m}^3$ to $1 \times 10^{-2} \text{m}^3$ at 300 K against a constant pressure of										
	1 × 10	$1 \times 10^5 \mathrm{Nm}^{-2}$. The work done is :										
	(A)	-900 J	(B)	$-900\mathrm{kJ}$	(C)	$270\mathrm{kJ}$	(D)	$+900\mathrm{kJ}$				

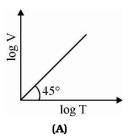
10. Match the entries of Column-I with appropriate entries of Column-II and choose the correct option out of the four option (A), (B), (C) and (D).

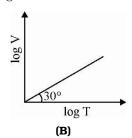
Column-I			Column-II			
(a)	Isothermal	(p)	$\Delta T = 0$			
(b)	Isobaric	(q)	$\Delta V = 0$			
(c)	Adiabatic	(r)	$\Delta P = 0$			
(d)	Isochoric	(s)	q = 0			

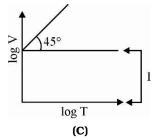
Code:

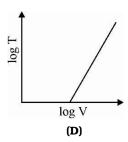
	(a)	(b)	(c)	(d)		(a)	(b)	(c)	(d)
(A)	p	q	r	s	(B)	p	r	s	q
(C)	s	p	r	q	(D)	s	p	q	r

- **11.** Which of the following is true for an adiabatic process?
 - (A)
- $\Delta H = 0$
- (B)
- (C)
- dq = 0
- **(D)** $\Delta V = 0$


12. Consider the reaction at 300 K


$$C_6H_6(\ell) + \frac{15}{2}O_2(g) \longrightarrow 6CO_2(g) + 3H_2O(\ell); \Delta H = -3271 \,\text{kJ}$$


 $\Delta W = 0$


What is ΔU for the combustion of 1.5 mole of benzene at $27^{\circ}C$?

- (A)
- -3267.25 kJ
- **(B)**
- -4900.88 kJ
- (C)
- -4906.5 kJ
- **(D)** −3274.75 kJ
- **13.** An ideal gas expand against a constant external pressure at 2.0 atmosphere from 20 litre to 40 litre and absorb 10 kJ of energy from surrounding. What is the change in internal energy of the system?
 - (A)
- 4052 J
- (B)
- 5948 J
- **(C)** 14052 J
- **(D)** 9940 J
- 14. For a closed container containing n = 100 mole of an ideal gas fitted with movable, frictionless, weightless piston operating such that pressure of gas remains constant at 8.21 atm, which graph represents correct variation of log V and log T where V is in litre and T in kelvin.

- 10 mole of ideal gas expand isothermally and reversibly from a pressure of 10 atm to 1 atm at 300 K. What is the largest mass which can lifted through a height of 100 meter?
 - (A)
- 31842 kg
- **(B)**
- 58.55 kg
- (C)
- 342.58 kg
- **(D)**
- None of these