

High Level Problems (HLP)

1. A particle moving on a curve has the position at time t given by $x = f'(t) \sin t + f''(t) \cos t$, $y = f'(t) \cos t - f''(t) \sin t$, where f is a thrice differentiable function. Then prove that the velocity of the particle at time t is $f'(t) + f'''(t)$.
2. Find the interval in which $f(x) = x \sqrt{4ax - x^2}$ ($a < 0$) is decreasing
3. $f : [0, 4] \rightarrow \mathbb{R}$ is a differentiable function. Then prove that for some $a, b \in (0, 4)$, $f^2(4) - f^2(0) = 8f'(a) \cdot f(b)$
4. If all the extreme value of function $f(x) = a^2x^3 - \frac{a}{2}x^2 - 2x - b$ are positive and the minimum is at the point $x_0 = \frac{1}{3}$ then show that when $a = -2 \Rightarrow b < \frac{-11}{27}$ and when $a = 3 \Rightarrow b < -\frac{1}{2}$
5. If $f(x) = \begin{cases} 3+|x-k|, & x \leq k \\ a^2 - 2 + \frac{\sin(x-k)}{x-k}, & x > k \end{cases}$ has minimum at $x = k$, then show that $|a| > 2$
6. The equation $x^3 - 3x + [a] = 0$, where $[.]$ denotes the greatest integer function, will have three real and distinct roots then find the set of all possible values of a .
7. Let $f(x) = \sin \frac{\{x\}}{a} + \cos \frac{\{x\}}{a}$ where $a > 0$ and $\{.\}$ denotes the fractional part function. Then find the set of values of 'a' for which f can attain its maximum values.
8. Find the values of the parameter 'k' for which the equation $x^4 + 4x^3 - 8x^2 + k = 0$ has all roots real.

Comprehension (Q. No. 9 to 11)

A function $f(x)$ having the following properties;

- (i) $f(x)$ is continuous except at $x = 3$
- (ii) $f(x)$ is differentiable except at $x = -2$ and $x = 3$
- (iii) $f(0) = 0$, $\lim_{x \rightarrow 3} f(x) \rightarrow -\infty$, $\lim_{x \rightarrow -\infty} f(x) = 3$, $\lim_{x \rightarrow \infty} f(x) = 0$
- (iv) $f'(x) > 0 \forall x \in (-\infty, -2) \cup (3, \infty)$ and $f'(x) \leq 0 \forall x \in (-2, 3)$
- (v) $f''(x) > 0 \forall x \in (-\infty, -2) \cup (-2, 0)$ and $f''(x) < 0 \forall x \in (0, 3) \cup (3, \infty)$

then answer the following questions

9. Find the Maximum possible number of solutions of $f(x) = |x|$
10. Show that graph of function $y = f(-|x|)$ is continuous but not differentiable at two points, if $f'(0) = 0$

11. Show that $f(x) + 3x = 0$ has five solutions if $f'(0) > -3$ and $f(-2) > 6$

12. Let $F(x) = (f(x))^2 + (f'(x))^2$, $F(0) = 7$, where $f(x)$ is thrice differentiable function such that $|f(x)| \leq 1 \forall x \in [-1, 1]$, then prove the followings.

- there is atleast one point in each of the intervals $(-1, 0)$ and $(0, 1)$ where $|f'(x)| \leq 2$
- there is atleast one point in each of the intervals $(-1, 0)$ and $(0, 1)$ where $F(x) \leq 5$
- there exists atleast one maxima of $F(x)$ in $(-1, 1)$
- for some $c \in (-1, 1)$, $F(c) \geq 7$, $F'(c) = 0$ and $F''(c) \leq 0$

13. A figure is bounded by the curves, $y = x^2 + 1$, $y = 0$, $x = 0$ and $x = 1$. At what point (a, b) , a tangent should be drawn to the curve $y = x^2 + 1$ for it to cut off a trapezium of the greatest area from the figure.

14. If $y = \frac{ax+b}{(x-1)(x-4)}$ has a turning value at $(2, -1)$ find a and b , show that the turning value is a maximum.

15. With the usual meaning for a, b, c and s , if Δ be the area of a triangle, prove that the error in Δ resulting from a small error in the measurement of c , is given by

$$d\Delta = \frac{\Delta}{4} \left\{ \frac{1}{s} + \frac{1}{s-a} + \frac{1}{s-b} - \frac{1}{s-c} \right\} dc$$

16. Find the possible values of 'a' such that the inequality $3 - x^2 > |x - a|$ has atleast one negative solution

17. If $(m-1)a_1^2 - 2m a_2 < 0$, then prove that $x^m + a_1 x^{m-1} + a_2 x^{m-2} + \dots + a_{m-1} x + a_0 = 0$ has at least one non real root ($a_1, a_2, \dots, a_m \in \mathbb{R}$)

18. If $f'(x) > 0$, $f''(x) > 0 \forall x \in (0, 1)$ and $f(0) = 0$, $f(1) = 1$, then prove that $f(x) f^{-1}(x) < x^2 \forall x \in (0, 1)$

19. Find the interval of increasing and decreasing for the function $g(x) = 2f\left(\frac{x^2}{2}\right) + f\left(\frac{27}{2} - x^2\right)$, where $f''(x) < 0$ for all $x \in \mathbb{R}$.

20. Using calculus prove that $H.M \leq G.M \leq A.M$ for positive real numbers.

21. Prove the following inequalities

- $1 + x^2 > (x \sin x + \cos x)$ for $x \in [0, \infty)$.
- $\sin x - \sin 2x \leq 2x$ for all $x \in \left[0, \frac{\pi}{3}\right]$
- $\frac{x^2}{2} + 2x + 3 \geq (3 - x)e^x$ for all $x \geq 0$
- $0 < x \sin x - \frac{\sin^2 x}{2} < \frac{1}{2}(\pi - 1)$ for $0 < x < \frac{\pi}{2}$

22. Find the interval to which b may belong so that the function $f(x) = \left(1 - \frac{\sqrt{21-4b-b^2}}{b+1}\right)x^3 + 5x + \sqrt{6}$ is increasing at every point of its domain.

23. If $0 < x < 1$ prove that $y = x \ln x - \frac{x^2}{2} + \frac{1}{2}$ is a function such that $\frac{d^2y}{dx^2} > 0$. Deduce that $x \ln x > \frac{x^2}{2} - \frac{1}{2}$.

24. Find positive real numbers 'a' and 'b' such that $f(x) = ax - bx^3$ has four extrema on $[-1, 1]$ at each of which $|f(x)| = 1$

25. For any acute angled $\triangle ABC$, find the maximum value of $\frac{\sin A}{A} + \frac{\sin B}{B} + \frac{\sin C}{C}$

26. Suppose p, q, r, s are fixed real numbers such that a quadrilateral can be formed with sides p, q, r, s in clockwise order. Prove that the vertices of the quadrilateral of maximum area lie on a circle.

27. Find the minimum value of $f(x) = 8^x + 8^{-x} - 4(4^x + 4^{-x})$, $\forall x \in \mathbb{R}$

28. Using calculus, prove that $\log_2 3 > \log_3 5 > \log_4 7$.

29. Find the cosine of the angle at the vertex of an isosceles triangle having the greatest area for the given constant length ℓ of the median drawn to its lateral side.

30. A tangent to the curve $y = 1 - x^2$ is drawn so that the abscissa x_0 of the point of tangency belongs to the interval $(0, 1]$. The tangent at x_0 meets the x-axis and y-axis at A & B respectively. Then find the minimum area of the triangle OAB, where O is the origin

31. A cone is made from a circular sheet of radius $\sqrt{3}$ by cutting out a sector and keeping the cut edges of the remaining piece together. Then find the maximum volume attainable for the cone

32. Suppose velocity of waves of wave length λ in the Atlantic ocean is $k \sqrt{\left(\frac{\lambda}{a}\right) + \left(\frac{a}{\lambda}\right)}$, where k and a are constants. Show that minimum velocity attained by the waves is independent of the constant a .

33. Find the minimum distance of origin from the curve $ax^2 + 2bxy + ay^2 = c$ where $a > b > c > 0$

34. Prove that $e^x + \sqrt{1+e^{2x}} \geq (1+x) + \sqrt{2+2x+x^2}$ $\forall x \in \mathbb{R}$

35. Find which of the two is larger $\ln(1+x)$ or $\frac{\tan^{-1} x}{1+x}$.

36. Let $f'(\sin x) < 0$ and $f''(\sin x) > 0$, $\forall x \in \left(0, \frac{\pi}{2}\right)$ and $g(x) = f(\sin x) + f(\cos x)$, then find the intervals of monotonicity of $g(x)$.

37. If $f(x) = (2013)x^{2012} - (2012)x^{2011} - 2014x + 1007$, then show that for $x \in [0, 1007^{1/2011}]$, $f(x) = 0$ has at least one real root.

39. A function f is differentiable in the interval $0 \leq x \leq 5$ such that $f(0) = 4$ & $f(5) = -1$. If $g(x) = \frac{f(x)}{x+1}$, then prove that there exists some $c \in (0, 5)$ such that $g'(c) = -\frac{5}{6}$.

39. Let $f(x)$ and $g(x)$ be differentiable functions having no common zeros so that $f(x)g'(x) \neq f'(x)g(x)$. Prove that between any two zeros of $f(x)$, there exist atleast one zero of $g(x)$.

40. If $\phi(x)$ is a differentiable function $x \in \mathbb{R}$ and $a \in \mathbb{R}^+$ such that $\phi(0) = \phi(2a)$, $\phi(a) = \phi(3a)$ and $\phi(0) \neq \phi(a)$ then show that there is at least one root of equation $\phi'(x+a) = \phi'(x)$ in $(0, 2a)$

41. Find the set of values of the parameter 'a' for which the function ;
 $f(x) = 8ax - a \sin 6x - 7x - \sin 5x$ increases & has no critical points for all $x \in \mathbb{R}$, is

42. Let h be a twice differentiable positive function on an open interval J . Let
 $g(x) = \ln(h(x)) \forall x \in J$
Suppose $(h'(x))^2 > h''(x)h(x)$ for each $x \in J$. Then prove that g is concave downward on J .

43. If the complete set of value(s) of 'a' for which the function $f(x) = \frac{ax^3}{3} + (a+2)x^2 + (a-1)x + 2$ possess a negative point of inflection is $(-\infty, \alpha) \cup (\beta, \infty)$, then $|\alpha| + |\beta|$ is :

44. If two curves $y = 2\sin \frac{5\pi}{6}x$ and $y = \alpha x^2 - 3\alpha x + 2\alpha + 1$ touch each other at some point then the value of $\frac{\sqrt{3}\alpha}{5\pi}$ is $\left(0 \leq x \leq \frac{18}{5}\right)$

45. The maximum distance of the point $(k, 0)$ from the curve $2x^2 + y^2 - 2x = 0$ is equal to

46. Let $f(x) = px^3 + qx^2 + qx + p$; where $3p + 2q < 0$, $7p + 3q > 0$ then prove that
(i) Equation $3px^2 + 2qx + q = 0$ has at least one root lie between $(-1, 1/2)$
(ii) Equation $3px^2 + 2qx + q = 0$ has at least one root lie between $(1/3, 3)$
(iii) Equation $3px^4 + 4qx^3 + 6qx^2 + 12px = 0$ has two root lie in $(-1, 1)$
(iv) Equation $3px^4 + 4qx^3 + 6qx^2 + 12px = 0$ has one root less than -1 and one root greater than 1

47. Let $f, g : [0, 1] \rightarrow \mathbb{R}$ are differentiable functions with $f(0) \neq g(0)$. f and g has exactly one point of local minimum in $(0, 1)$ and have same minimum value but different point of minimum. $h(x) = f(x) - g(x)$. $f(\{x\})$ and $g(\{x\})$ are differentiable function $\forall x \in \mathbb{R}$ {where $\{.\}$ denotes G.I.F.}. Prove that
(i) $(f(\{x\}))' = 0$ has atleast 3 solution in $(0, 2)$
(ii) $(h(\{x\}))' = 0$ has atleast 3 solution in $(0, 2)$

Answers

2. $[4a, 3a]$ 6. $a \in [-1, 2)$ 7. $\left(0, \frac{4}{\pi}\right)$

8. $k \in [0, 3]$ 9. 3 13. $\left(\frac{1}{2}, \frac{5}{4}\right)$

14. $a = 1, b = 0$ 16. $a \in \left(-\frac{13}{4}, 3\right)$

18. If $f'(x) > 0, f''(x) > 0 \forall x \in (0, 1)$ and $f(0) = 0, f(1) = 1$, then prove that $f(x) < x^2 \forall x \in (0, 1)$

19. $g(x)$ is increasing if $x \in (-\infty, 3] \cup [0, 3]$
 $g(x)$ is decreasing if $x \in [-3, 0] \cup [3, \infty)$

22. $[-7, -1) \cup [2, 3]$ 24. $a = 3, b = 4$ 25. $\frac{9\sqrt{3}}{2\pi}$

27. -10 29. $\cos A = 0.8$ 30. $\frac{4\sqrt{3}}{9}$

31. $2\pi/3$ 33. $\sqrt{\frac{c}{a+b}}$ 35. $\ln(1+x)$

36. Increasing when $x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$, decreasing when $x \in \left(0, \frac{\pi}{4}\right)$.

41. $a \in (6, \infty)$ 43. 2 44. 1/2

45.
$$\begin{cases} \sqrt{2k^2 - 2k + 1} & k \in [0, 1) \\ 1-k & k < 0 \\ k & k \geq 1 \end{cases}$$