14. The values of x in
$$[-2\pi, 2\pi]$$
, for which the graph of the function $y = \sqrt{\frac{1 + \sin x}{1 - \sin x}} - \sec x$ and

$$y = -\sqrt{\frac{1-\sin x}{1+\sin x}} + \sec x$$
, coincide are

$$(\mathsf{A})\left[-2\pi,-\frac{3\pi}{2}\right)\cup\left(\frac{3\pi}{2},\,2\pi\right] \qquad \qquad (\mathsf{B})\left(-\frac{3\pi}{2},\,-\frac{\pi}{2}\right)\cup\left(\frac{\pi}{2},\,\frac{3\pi}{2}\right)$$

(B)
$$\left(-\frac{3\pi}{2}, -\frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$$

(C)
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

(D)
$$[-2\pi, 2\pi] - \left\{\pm \frac{\pi}{2}, \pm \frac{3\pi}{2}\right\}$$

Ans. (AC)

Sol.
$$y = \sqrt{\frac{1+\sin x}{1-\sin x}} - \frac{1}{\cos x} = \frac{1+\sin x}{|\cos x|} - \frac{1}{\cos x} = \begin{bmatrix} \frac{\sin x}{\cos x} & \text{if } \cos x > 0 \\ -\frac{2+\sin x}{\cos x} & \text{if } \cos x < 0 \end{bmatrix}$$

again
$$Y = -\sqrt{\frac{1-\sin x}{1+\sin x}} + \frac{1}{\cos x}$$

$$\frac{1}{\cos x} - \frac{1 - \sin x}{|\cos x|} = \begin{bmatrix} \frac{\sin x}{\cos x} & \text{if } \cos x > 0\\ \frac{2 - \sin x}{\cos x} & \text{if } \cos x < 0 \end{bmatrix}$$

Hence for identifical graph $\cos x > 0$

- Let $f(x) = [x]^2 + [x + 1] 3$, where [x] denotes greatest integer less than or equal to x, then 15. which of the following statement(s) is/are CORRECT?
 - (A) f(x) is many one function.
 - (B) f(x) vanishes for atleast three values of x.
 - (C) f(x) is neither even nor odd function.
 - (D) f(x) is aperiodic.

(ABCD) Ans.

Sol. We have
$$f(x) = [x]^2 + [x] - 2 \Rightarrow f(x) = ([x] + 2)([x] - 1) = \begin{cases} -2, & 0 \le x < 1 \\ 0, & 1 \le x < 2 \end{cases}$$
 and so on.

 \Rightarrow f(x) is many one function.

Also
$$f(x) = 0 \Rightarrow x \in [-2, -1) \cup [1, 2) \Rightarrow f(x) = 0$$
 has infinite solutions.

As
$$f(-x) \neq f(x)$$
 and $f(-x) \neq -f(x) \implies f(x)$ is neither even nor odd function.

Now
$$f(x) = [x]^2 + [x] - 2$$
, where $[x]^2 + [x]$ is aperiodic.

 \Rightarrow f (x) is aperiodic.

- **16.** Let $f: I \to R$, defined as $f(x) = 5 \cos 4\pi x 13 \sin 7\pi x + 2$. Then which of the following alternative(s) is/are **TRUE**?
 - (A) Range of f is a singleton set.
- (B) f is an even function.

(C) $f(f(x)) = f(x) \forall x \in I$

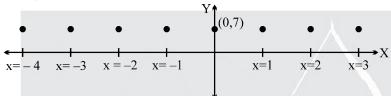
(D) Inverse function of f is non existent.

Ans. (ABCD)

Sol. Clearly
$$f(x) = 7$$
, $\forall x \in I$

$$\therefore$$
 R_f = {7}

The graph of f(x) is shown below.



Note: f is periodic function with period 1.]

17. Which of the following pair(s) of function have same graphs?

(A)
$$f(x) = \frac{\sec x}{\cos x} - \frac{\tan x}{\cot x}$$
, $g(x) = \frac{\cos x}{\sec x} + \frac{\sin x}{\csc x}$

(B) f (x) = sgn (x² - 4x + 5), g(x) = sgn
$$\left(\cos^2 x + \sin^2 \left(x + \frac{\pi}{3}\right)\right)$$
 where sgn denotes signum

function.

(C)
$$f(x) = e^{\ln(x^2+3x+3)}$$
, $g(x) = x^2 + 3x + 3$

(D)
$$f(x) = \frac{\sin x}{\sec x} + \frac{\cos x}{\csc x}$$
, $g(x) = \frac{2\cos^2 x}{\cot x}$

Ans. (ABCD)

Sol. (A) We have
$$f(x) = \frac{\sec x}{\cos x} - \frac{\tan x}{\cot x}$$
, $g(x) = \frac{\cos x}{\sec x} + \frac{\sin x}{\csc x}$

Clearly both f(x) and g(x) are identical functions as $x \neq \frac{k\pi}{2} \ \forall \ k \in I$.

(B) As
$$x^2 - 4x + 5 = (x - 2)^2 + 1 > 0$$

Hence
$$f(x) = 1 \forall x \in R$$
.

Also
$$\cos^2 x + \sin^2 \left(x + \frac{\pi}{2} \right) > 0$$

Hence $g(x) = 1 \forall x \in R$.

 \Rightarrow f(x) and g(x) are identical.

(C)
$$f(x) = e^{\ln(x^2 + 3x + 3)}$$

As
$$x^2 + 3x + 3 = \left(x + \frac{3}{2}\right)^2 + \frac{3}{4} > 0 \ \forall \ x \in \mathbb{R}.$$

Hence
$$f(x) = x^2 + 3x + 3 \forall x \in R$$
.

 \Rightarrow f(x) is identical to g(x).

(D) We have
$$f(x) = \frac{\sin x}{\sec x} + \frac{\cos x}{\csc x}$$
, $g(x) = \frac{2\cos^2 x}{\cot x}$

Clearly both f(x) and g(x) are identical functions as $x \neq \frac{k\pi}{2} \forall k \in I$.

Numerical based Questions:

18. N is the set of all natural number and R is the set of all real numbers. A function $f: N \to R$ is given by:

$$f(n) = \frac{4n + \sqrt{4n^2 - 1}}{\sqrt{2n - 1} + \sqrt{2n + 1}}, \text{ then the value of } \begin{bmatrix} \sum_{r=1}^{40} f(r) \\ \hline 40 \end{bmatrix} \text{ is equal to } \underline{\hspace{2cm}}.$$

(where [.] represents greatest integer function)

Ans. (9.00)

Sol.
$$f(n) = \frac{(2n+1)^{3/2} - (2n-1)^{3/2}}{2}$$

Hence
$$f(1) + f(2) + \dots + f(40) = \frac{(81)^{3/2} - (1)^{3/2}}{2} = 364$$

19. If $f(x) = \begin{cases} -x + 1 \\ -(x - 1)^2 \end{cases}$, $x \le 0$, then the number of solutions of the equation $f(x) - f^{-1}(x) = 0$

is /are____

Ans. (4.00)

Sol.
$$f^{-1}(x) = \begin{cases} -x + 1, & x \ge 1 \\ 1 + \sqrt{-x}, & x \le 0 \end{cases}$$

Solutions are -1, 1, 0, 2

20. f(x) and g(x) are linear function such that for all x, f(g(x)) and g(f(x)) are Identity functions. If f(0) = 4 and g(5) = 17, compute f(136).

Ans. (12)

Sol. Let
$$f(x) = ax + b$$
 and $g(x) = cx + d$

as g(f(x)) = x hold for all x, we have

$$f(g(x)) = a(g(x)) + b = a(cx + d) + b = acx + ad + b$$

$$\therefore$$
 acx + (ad + b) = x for all x, on comparing coefficients

$$\therefore \quad \text{ac} = 1 \text{ and } \quad \text{ad} + \text{b} = 0$$

$$c = 1/a \text{ and } \quad d = -\text{b/a}$$

$$\therefore g(x) = \frac{x}{a} - \frac{b}{a} = \frac{x - b}{a} \text{ also } f(x) = ax + b$$

now
$$f(0) = 4$$
 \Rightarrow $b = 4$ and

g (5) = 17
$$\Rightarrow \frac{5-4}{a} = 17 \Rightarrow a = \frac{1}{17}$$

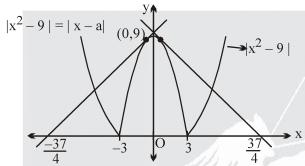
$$f(x) = \frac{x}{17} + 4 \implies f(136) = \frac{136}{17} + 4 = 12. \text{ Ans.}$$

Let $f(x) = |x^2 - 9| - |x - a|$. Find the number of integers in the range of a so that f(x) = 021. has 4 distinct real root.

Ans. (17)

 $x^2 - 9 = x - a$ Sol. For tangency, \Rightarrow $x^2 - x + a - 9 = 0$

Put D = 0
$$\Rightarrow$$
 1 - 4a + 36 = 0 \Rightarrow a = $\frac{37}{4}$



 $\therefore \text{ For 4 distinct solution, } \mathbf{a} \in \left(\frac{-37}{4}, -3\right) \cup \left(-3, 3\right) \cup \left(3, \frac{37}{4}\right)$

Hence, number of integers are 17 Ans.

Comprehension Type Question:

Paragraph for question nos. 22 to 23

Let f (x) = $x^2 - 2x - 1 \ \forall \ x \in \mathbb{R}$. Let f : $(-\infty, a] \to [b, \infty)$, where 'a' is the largest real number for which f (x) is bijective.

22. The value of (a + b) is equal to

$$(A) - 2$$

$$(B) - 1$$

Ans. (B)

 $f(x) = (x-1)^2 - 2$ a = 1, b = -2Sol.

$$a = 1, b = -2$$

a + b = -1 Ans.

Let f: $R \rightarrow R$, then range of values of k for which equation f (| x |) = k has 4 distinct real roots 23.

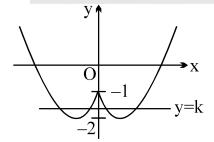
$$(A) (-2, -1)$$

$$(B) (-2, 0)$$

$$(C)(-1,0)$$

Ans.

Sol.



from graph
$$k \in (-2, -1)$$
 Ans.

Paragraph for question nos. 24 to 26

An even periodic function $f: R \to R$ with period 4 is such that

$$f(x) = \begin{bmatrix} max. (|x|, x^2) ; 0 \le x < 1 \\ x ; 1 \le x \le 2 \end{bmatrix}$$

- **24.** The value of $\{f(x)\}$ at x = 5.12 (where $\{\}$ represents fractional part), is
 - $(A) \{f (7.88) \}$
- (B) {f (3.26) }
- $(C) \{ f (2.12) \}$
- (D) { f (5.88) }

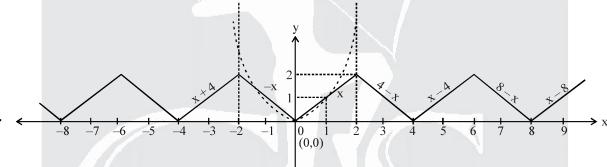
Ans. (A)

- 25. The equation of circle with centre lies on the curve f(x) at x = 9 and touches x-axis, is
 - (A) $x^2 + y^2 14x 2y + 49 = 0$
- (B) $x^2 + y^2 18x 4y + 84 = 0$
- (C) $x^2 + y^2 18x 2y + 81 = 0$
- (D) $x^2 + y^2 18x + 2y + 81 = 0$

Ans. (C)

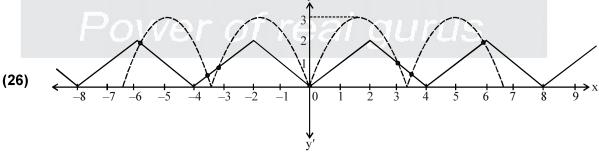
- **26.** If $g(x) = |3\sin x|$, then the number of solutions of f(x) = g(x) for $x \in (-6, 6)$, are
 - (A) 5
- (B) 7
- (C) 3
- (D) 9

Ans. (B)



- Sol.
- (24) At $x = 5.12 \implies f(x) = x 4$ Now f(5.12) = 5.12 - 4 = 1.12
 - $\therefore \{f(5.12)\} = 0.12 = \{f(7.88)\}$
- (25) At x = 9, centre of the circle lies on f(x) = x 8, then f(9) = 1So, centre is (9, 1) and radius = 1

Hence required equation of circle is $x^2 + y^2 - 18x - 2y + 81 = 0$



From above graph, clearly number of solutions are 7 Ans.

Matrix Match Type:

27. Match the following:

Column-I		Column-II	
Α	Let f: $[-1, \infty) \rightarrow (0, \infty)$ defined by f (x) = $e^{x^2 + x }$	Р	one-one
	then f (x), is		
В	Let f: $(1, \infty) \rightarrow [3, \infty)$ defined by	Q	into
	$f(x) = \sqrt{10 - 2x + x^2}$, then $f(x)$ is		
С	Let f : R \rightarrow I defined by f (x) = tan ⁵ π [x ² + 2x +3]	R	many one
	where [] denotes greatest integer function, then f (x) is		
D	Let $f: [3, 4] \rightarrow [4, 6]$ defined by	S	onto
	f(x) = x-1 + x-2 + x-3 + x-4 then	1	
	f (x)		
	///	Т	periodic

Ans. (A) Q, R; (B) P, Q; (C) Q, R, T; (D) P, S

Sol. (A)
$$f(x) = e^{x^2 + |x|}$$

Clearly function is many one as f(1) = f(-1)

Into as minimum value of $f(x) = e^{x^2 + |x|}$ is equal to 1 at x = 0

so range is [1, ∞) Ans. Q, R

(B)
$$f(x) = \sqrt{x^2 - 2x + 10} = \sqrt{(x-1)^2 + 9}$$

For $x \in (1, \infty)$ range is $(3, \infty)$. Hence into. One-one as line drawn 11 to x-axis cut's the graph at only one point.

Since $x \in (1, \infty)$ Ans. P, Q

(C)
$$f: R \rightarrow I$$

$$f(x) = \tan^5 \pi [x^2 + 2x + 3] = 0$$
 Ans. Q, R, T

(D) For
$$x \in [3, 4]$$

$$f(x) \in [4, 6]$$

As
$$f(x) = 2(x - 1)$$
 for $x \in [3, 4]$

28. Match the following:

Column-I		Column-II	
Α	Let f: $R^+ \rightarrow \{-1,0,1\}$ defined by	Р	Into U >
	$f(x) = sgn(x - x^4 + x^7 - x^8 - 1)$		
	where sgn denotes signum function, then $f(x)$ is		
В	Let $f: R \to R$ and satisfies	Q	One-one
	f(x) + x f(-x) = x + 1, then $f(x)$ is		
С	Let $f: [0, 4] \rightarrow [0, 9]$ defined by	R	Many-one
	$f(x) = \sqrt{6x - x^2}$, then $f(x)$ is		
D	Let $f: [0, 3] \rightarrow [2, 8]$ defined by	S	Even
	$f(x) = 2^{ x-1 + x-2 }$, then $f(x)$ is		
		Т	Onto

Ans. (A) P, R; (B) P, R, S; (C) P, R; (D) R, T

Sol. (A) Clearly $x - x^4 + x^7 - x^8 - 1 < 0 \ \forall \ x \in R^+$.

Hence sgn $(x - x^4 + x^7 - x^8 - 1) = -1 \ \forall \ x \in \mathbb{R}^+$.

(B) We have f(x) + x f(-x) = x + 1(1)

Replace x by –x in (1), we get

$$-x f(x) + f(-x) = 1 - x$$
(2)

∴ From (1) and (2), we get

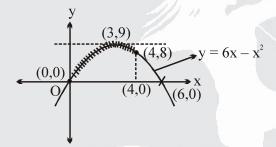
$$x^2 f(x) - x f(-x) = x^2 - x$$
(3)

$$\Rightarrow$$
 (1 + x^2) f(x) = 1 + x^2

Hence f(x) = 1

(C) We have $f(x) = \sqrt{6x - x^2}$

Clearly range of $f = [0, 3] \forall 0 \le x \le 4$.



(D) We have $f(x) = 2^{|x-1|+|x-2|}$

$$= \begin{cases} 2^{-2x+3} & ; & 0 \le x \le 3 \\ 2 & ; & 1 < x < 2 \\ 2^{2x-3} & ; & 2 \le x \le 3 \end{cases}$$

Clearly range of $f = [2, 8] \forall 0 \le x \le 3.$

Power of real gurus