MATHEMATICS

TARGET: JEE- Advanced 2021

CAPS-13

AOD-2

1.	(A)	2.	(A)	3.	(A)	4.	(A)	5.	(B)
6.	(C)	7.	(C)	8.	(B)	9.	(C)	10.	(A)
11.	(B)	12.	(BCD)	13.	(ABCD)	14.	(AC)	15.	(ABCD)
16.	(ACD)	17.	(C)	18.	(D)	19.	(C)	20.	(C)

ANSWER KEY OF CAPS-13

1 21. (C) 22. (B) 26. (4)

27. (3)

32. (B) 23. (C) 28. (0)

(6) $(2\pi/3)$

(B)

36. $(In \pi)$

(D)

(4)

25.

30.

SCQ (Single Correct Type):

- $f:[0,4]\to R$ is a differentiable function. Then for some a, b $\in (0,4)$, $f^2(4)-f^2(0)=$
 - (A) 8f'(a) . f(b)
- (B) 4f'(b) f(a)
- (C) 2f' (b) f(a)

29.

(D) f'(b) f(a)

Ans. (A)

31.

(2)

Sol. Here f is a differentiable function then f is continuous function

So by L.M.V. theorem for any $a \in (0, 4)$

$$f'(a) = \frac{f(4) - f(0)}{4 - 0}$$
 ...(1)

Again from mean value for any $b \in (0, 4)$

$$f(b) = \frac{f(4) + f(0)}{2} \qquad ...(2)$$

Now multiplying (1) and (2), we get

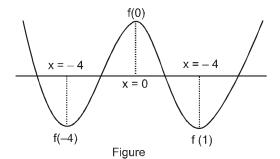
$$\frac{f^{2}(4) - f^{2}(0)}{8} = f'(a) \cdot f(b) \qquad \Rightarrow \qquad f^{2}(4) - f^{2}(0) = 8f'(a) \cdot f(b)$$

- The values of the parameter 'k' for which the equation $x^4 + 4x^3 8x^2 + k = 0$ has all roots real is given by 2.
 - (A) $k \in (0,3)$
- (B) $k \in (0, 128)$
- (C) $k \in (3, 128)$
- (D) $k \in (128, \infty)$

Ans. (A)

Sol. Let
$$f(x) = x^4 + 4x^3 - 8x^2 + k$$

 $f'(x) = 4x^3 + 12x^2| - 16 x = 4x (x^2 + 3x - 4) = 4x (x + 4) (x - 1)$
 $\Rightarrow f'(x) = 0 \Rightarrow x = -4, 0, 1$
 $f''(x) = 12x^2 + 24x - 16 = 4(3x^2 + 6x - 4)$



$$f''(-4) = 20 > 0$$

$$f''(0) = -16 < 0$$

$$f''(1) = 20 > 0$$

 \Rightarrow x = -4 and x = 1 are points of local minima whereas

k < 3

x = 0 is point of local maxima

for f(x) = 0 to have 4 real roots

$$f(-4) < 0 \Rightarrow$$

$$\Rightarrow$$

$$\Rightarrow$$

$$\Rightarrow$$
 k \in (0, 3)

- A composite function $(f_1 o f_2 o f_3 o....of_{21})(X)$ is an increasing function. If number of increasing functions 3. in the set $\left\{f_1,f_2,.....f_{21}\right\}$ is r and remaining are decreasing functions, then maximum value of r(21-r) is
 - (A) 110
- (B) $\frac{441}{4}$
- (d) None of these

Ans. (A)

Sol. Number decreasing functions = (21-r)

Since the composite function is increasing, therefore, 21- r must be even

$$\Rightarrow r \in \{1,3,5,\dots,21\}$$

Now,
$$21r - r^2 = \frac{441}{4} - \left(r - \frac{21}{2}\right)^2$$
 is maximum at $r = 11$

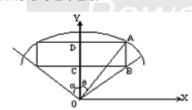
Maximum of
$$21r - r^2 = \frac{441}{4} - \frac{1}{4} = 110$$

- A sector subtends an angle 2α at the centre then the greatest area of the rectangle inscribed in the 4. sector is (R is radius of the circle)
 - (A) $R^2 \tan \frac{\alpha}{2}$
- (B) $\frac{R^2}{2} \tan \frac{\alpha}{2}$ (C) $R^2 \tan \alpha$
- (D) $\frac{R^2}{2} \tan \alpha$

Ans. (A)

Sol. Let A be any point on the arc such that \angle YOA = θ

Where $0 \le \theta \le \alpha$



 $DA = CB = R \sin\theta$, $OD = R \cos\theta$

$$\Rightarrow$$
 CO = CB cot α = R sin θ cot α

Now, CD = OD -OC =
$$R\cos\theta - R\sin\theta \cot\alpha$$

=
$$R(\cos\theta - \sin\theta \cot\alpha)$$

Area of rectangle ABCD, S = 2.CD.CB

$$= 2R(\cos\theta - \sin\theta\cot\alpha)R\sin\theta$$

$$=2R^{2}\left(\sin\theta\cos\theta-\sin^{2}\theta\cot\alpha\right)$$

$$R^{2}\left(\sin 2\theta - (1-\cos 2\theta)\cot \alpha\right) = \frac{R^{2}}{\sin \alpha}\left[\cos(2\theta - \alpha) - \cos \alpha\right]$$

$$S_{\text{max}} = \frac{R^2}{\sin \alpha} (1 - \cos \alpha) \left(\text{for } \theta = \frac{\alpha}{2} \right)$$

Hence, greatest area of the rectangle = $R^2 \tan \frac{\alpha}{2}$

5. If the graphs of the functions $y = \ln x \& y = ax$ intersect at exactly two points, then

(B)
$$a \in \left(0, \frac{1}{e}\right)$$
 (C) $a \in (-e, 1)$

(d)
$$a \in (1,e)$$

Ans. (B)

Sol. In x = ax has exactly two solutions

 $\frac{\ln x}{x}$ = a has exactly two solutions

Let
$$f(x) = \frac{\ln x}{x}$$

Range of
$$y \in \left(-\infty, \frac{1}{e}\right)$$

6. Let f (x) be a polynomial of degree 3 satisfying f(3) = 5, f(-1) = 9, f(x) has minimum at x = 0 and f'(x)

has maximum at x = 1. The distance between local maximum and local minimum of f(x) is

(A)
$$3\sqrt{2}$$

(B)
$$\sqrt{15}$$

(C)
$$2\sqrt{5}$$

(D)
$$4\sqrt{3}$$

Ans. (C)

Sol.
$$f(x) = -x^3 + 3x^2 + 5$$

Statement 1: In $\triangle ABC$, $\sin A + \sin B \sin C \le \frac{3\sqrt{3}}{2}$ 7.

Statement 2: Let y = f(x) be a twice differentiable function such that f''(x) < 0 in [a,b] then

$$\frac{f(a_1)+f(a_2)+f(a_3)}{3} \geq f\left(\frac{a_1+a_2+a_3}{3}\right) \text{ for } a_1,a_2,a_3 \in [a,b]$$

(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct Explanation for Statement-1

(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1

(C) Statement-1 is True, Statement-2 is False

(D) Statement-1 is False, Statement-2 is True

Ans. (C)

Sol. Let $f(x) = \sin x \implies f'(x) = \cos x \implies f''(x) = -\sin x < 0 \ \forall \ x \in [0,\pi]$

It is concave down and (A,sin A) (B,sin B) (C,sinC) are three points and

$$\frac{sin\,A + sin\,B + sin\,C}{3} \leq sin \left(\frac{A + B + C}{3}\right) \Rightarrow sin\,A + sin\,B + sin\,C \leq \frac{3\sqrt{3}}{2}$$

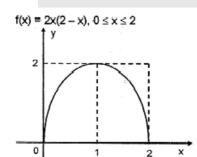
- 8. Let P(x) be a fourth degree polynomial with derivative P'(x). Such that P(1) = P(2) = P(3) = P'(7) = 0. Let k is the real number $k \ne 1,2,3$ such that P(k) = 0, then k is equal to
 - (A) $\frac{317}{37}$
- (B) $\frac{319}{37}$
- (C) $\frac{321}{37}$
- (D) $\frac{15}{37}$

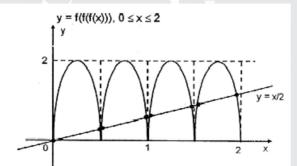
Ans. (B)

- **Sol.** P(x) = a(x-1)(x-2)(x-3)(x-b)
 - P'(7) = 0
 - $\Rightarrow a[20(7-b) + 24(7-b) + 30(7-b) + 120] = 0 \qquad \Rightarrow b = \frac{319}{37}$
- **9.** Let f(x) = 2x(2-x), $0 \le x \le 2$. The number of solution of $f(f(f(x))) = \frac{x}{2}$ is
 - (A) 2

- (B) 4
- (C) 8
- (D) 12

Ans. (C)

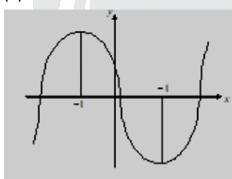




Sol.

- **10.** Set of values of a for which one negative and two positive real roots of the equation $x^3 3x + a = 0$ are possible, is _____.
 - (A)(0,2)
- (B)(0,4)
- (C)(2,4)
- (D) (0, 10)

Ans. (A)



of real gurus

Sol.

Let
$$f(x) = x^3 - 3x - a$$

$$\Rightarrow$$
 f'(x) = 3x² - 3 = 0 \Rightarrow x = \pm 1

$$f(1) f(-1) < 0$$

$$(a+2)(a-2)<0$$

$$a\in \left(-2,2\right)$$

From graph f(0) f(1) < 0

$$a(a-2) < 0$$

$$a \in (0, 2)$$

$$\therefore$$
 a \in (0, 2)

11.
$$f(x) = \begin{cases} e^x - 2 - e^{-2}, x < -2 \\ x^2 - x + \lambda, -2 \le x \le 2 \\ -\mu \ell nx, x > 2 \end{cases}$$

If y = f(x) has local maxima at x = -2, then range of λ is

- (A) $(-\infty, 8]$
- (B) [-8, ∞)
- (C) [–8, 8]
- (D) $(-\infty, -8] \cup [8, \infty)$

Ans. (B)

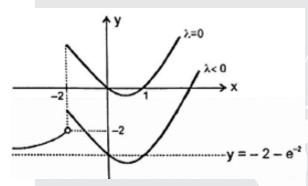
Sol.
$$y = e^x - 2 - e^{-2}$$

at x = -2 maxima

$$4+2+\lambda \geq -2$$

$$\Rightarrow \lambda \ge -8$$

$$\Rightarrow \lambda \ge -8$$
 $\Rightarrow \lambda \in [-8, \infty)$



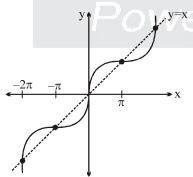
MCQ (One or more than one correct):

- 12. Consider the function $f: R \to R$ defined as $f(x) = x + \sin x$. Which of the following is/are the correct statement(s)?
 - (A) The function is strictly increasing at every point on R except at 'x' equal to an odd integral multiple of π where the derivative of f (x) is zero and where the function f is not strictly increasing.
 - (B) The function is bounded in every bounded interval but unbounded on whole real line.
 - (C) The graph of the function y = f(x) lies in the first and third quadrants only.
 - (D) The graph of the function y = f(x) cuts the line y = x at infinitely many points.

Ans. (BCD)

- **Sol.** We have $f'(x) = 1 + \cos x \implies f$ is strictly increasing and has inflection point at $x = n\pi$ Also there is no x for which f(x) is not increasing.
 - \Rightarrow (A) is not correct

As f is continuous $\forall x \in R$ hence bounded in every closed interval.



As f is odd hence symmetric w.r.t origin and its graphs lies in 1^{st} and 3^{rd} quadrant and y = x cut the graph at infinitely many points.

B, C, D are correct] \Rightarrow

13. Let f(x) be a non constant twice derivable function defined on R such that f(2 + x) = f(2 - x) and

$$f'\left(\frac{1}{2}\right) = 0 = f'(1)$$
. Then which of the following alternative(s) is/are correct?

- (A) f (-4) = f (8).
- (B) Minimum number of roots of the equation f''(x) = 0 in (0, 4) are 4.

(C)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} f(2+x) \sin x \, dx = 0.$$

 $\text{(D)} \ \int\limits_{0}^{2} f(t) 5^{\cos \pi t} \ dt = \int\limits_{2}^{4} f(4-t) 5^{\cos \pi t} \ dt \ .$

Ans. (ABCD)

Sol. We have f(2-x) = f(2+x)

Replacing x by 2 - x, we get

$$f(x) = f(4 - x)$$
(1)

Put x = -4 in (1), we get

$$f(-4) = f(8)$$
 \Rightarrow (A) is correct

On differentiating (1) w.r.t. x, we get

$$f'(x) = -f'(4-x)$$
(2)

Put
$$x = \frac{1}{2}$$
, 1, 2 in (2), we get

$$f'\left(\frac{1}{2}\right) = 0 = f'(1) = f'(2) = f'\left(\frac{7}{2}\right) = f'(3)$$

Now, consider a function y = f'(x)

As f'(x) satisfy Rolle's theorem in $\begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$, $\begin{bmatrix} 1, 2 \end{bmatrix}$, $\begin{bmatrix} 2, \frac{7}{2} \end{bmatrix}$, $\begin{bmatrix} \frac{7}{2}, 3 \end{bmatrix}$ respectively.

So, by Rolle's theorem, the equation f''(x) = 0 has minimum 4 roots in (0, 4). \Rightarrow **(B)** is correct

Now, consider
$$I_1 = \int_{\pi/4}^{\pi/4} f(2+x) \sin x \, dx$$
(3)

Applying king property, we get

$$I_1 = \int_{-\pi/4}^{\pi/4} f(2-x) \sin(-x) dx = -\int_{-\pi/4}^{\pi/4} f(2+x) \sin(x) dx$$

Hence $I_1 = 0$ \Rightarrow (C) is correct

Again, consider $I_2 = \int_0^2 f(t) 5^{\cos \pi t} dt$

Put
$$4 - t = y \implies dt = -dy$$

So,
$$I_2 = \int_4^2 f(4-y) \ 5^{\cos \pi (4-y)} (-dy) = \int_2^4 f(4-y) \ 5^{\cos \pi y} \ dy = \int_2^4 f(4-t) \ 5^{\cos \pi t} \ dt \implies \textbf{(D) is correct}$$

If $\underset{x \to a}{\text{Lim}} f(x) = \underset{x \to a}{\text{Lim}} [f(x)]$ (a \in R), where $[\cdot]$ denotes greatest integer function and f (x) is a non constant 14.

continuous function, then

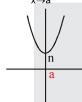
(A) $\lim_{x\to a} f(x)$ is an integer.

- (B) $\lim_{x\to a} f(x)$ is non integer.
- (C) f(x) has a local minimum at x = a.
- (D) f(x) has a local maximum at x = a.

Ans. (AC)

Clearly $\underset{x \to a}{\text{Lim}}[f(x)]$ is an integer and LHL and RHL should be same for existence of $\underset{x \to a}{\text{Lim}}f(x)$ Sol.

Let $\lim_{x\to a} [f(x)] = n (n \in I)$



Clearly LHL and RHL both should be just greater than n as f(x) is cont. at x = a

- \therefore f(x) has local minimum at x = a
- If graph of y = f'(x) is 15.

then which of the following can be true for y = f(x)

- (A) point of inflection at x = 1 and x = 2
- (B) concave down in $(-\infty,1) \cup (2,\infty)$
- (C) point of local maxima at x = 3
- (D) decreasing in interval $(3,\infty)$

Ans. (ABCD)

- 16.
- (C) g(x) is decreasing in $\left(\frac{3\pi}{4}, \pi\right)$
- (D) g(x) has local maximum at $x = \frac{3\pi}{4}$

Ans. (ACD)

Sol. $g'(x) = f'(tanx) sec^2 x - f'(cotx) cosec^2 x$

 $:: f''(x) < 0 \Rightarrow f'(x)$ is decreasing

$$\tan x < \cot x \forall x \in \left(\frac{\pi}{2}, \frac{3\pi}{4}\right)$$

 $\therefore \ f'(tanx) > f'(cotx) \ \& \ sec^2 \ x > cosec^2 x \ \forall x \in \left(\frac{\pi}{2}, \frac{3\pi}{4}\right) \\ \Rightarrow g(x) \ \text{is increasing in} \ \left(\frac{\pi}{2}, \frac{3\pi}{4}\right)$

g(x) is decresing in $\left(\frac{3\pi}{4},\pi\right)$ and g(x) has local maximum at $x=\frac{3\pi}{4}$

Comprehension Type Question:

Comprehension #1

Consider f, g and h be three real valued differentiable functions defined on R. Let $g(x) = x^3 + g''(1)$ $x^2 + (3g'(1) - g''(1) - 1) x + 3g'(1)$, f(x) = x g(x) - 12x + 1 and $f(x) = (h(x))^2$ where h(0) = 1.

- **17.** The function y = f(x) has
 - (A) Exactly one local minima and no local maxima
 - (B) Exactly one local maxima and no local minima
 - (C) Exactly one local maxima and two local minima
 - (D) Exactly two local maxima and one local minima

Ans. (C)

- **18.** Which of the following is/are true for the function y = g(x)?
 - (A) g(x) monotonically decreases in $\left(-\infty,2-\frac{1}{\sqrt{3}}\right)\cup\left(2+\frac{1}{\sqrt{3}},\infty\right)$
 - (B) g(x) monotonically increases in $\left(2 \frac{1}{\sqrt{3}}, 2 + \frac{1}{\sqrt{3}}\right)$
 - (C) There exists exactly one tangent to y = g(x) which is parallel to the chord joining the points (1, g(1)) and (3, g(3))
 - (D) There exists exactly two distinct Lagrange's mean value in (0, 4) for the function y = g(x).

Ans. (D)

- **19.** Which one of the following does not hold good for y = h(x)?
 - (A) Exactly one critical point

- (B) No point of inflection
- (C) Exactly one real zero in (0, 3)
- (D) Exactly one tangent parallel to x-axis

Ans. (C)

Sol. We have
$$g(x) = x^3 + g''(1)x^2 + (3g'(1) - g''(1) - 1)x + 3g'(1)$$

Let g'(1) = a and g''(1) = b then $g(x) = x^3 + bx^2 + (3a - b - 1)x + 3a$

Differentiating both sides w.r.t. x

$$g'(x) = 3x^2 + 2bx + (3a - b - 1)$$

Put
$$x = 1 \implies g'(1) = 3 + 2b + 3a - b - 1 \implies a = b + 3a + 2 \implies 2a + b = -2 (1)$$

$$g''(x) = 6x + 2b$$

Put
$$x = 1$$

$$g''(1) = 6 + 2b \implies b = 6 + 2b \implies b = -6 \dots (2)$$

 \therefore From equation (1), we get a = 2

$$\therefore$$
 g(x) = $x^3 - 6x^2 + 11x + 6$

Given
$$f(x) = xg(x) - 12x + 1 = x^4 - 6x^3 + 11x^2 - 6x + 1 = (x^2 + 1)^2 - 2x^2 + 11x^2 - 6x^3 - 6x$$

$$=(x^2+1)^2-6x(x^2+1)+(3x)^2$$

$$f(x) = (x^2 - 3x + 1)^2 = {h(x)}^2$$
 (Given)

:
$$h(0) = 1$$

$$h(x) = x^2 - 3x + 1$$