MATHEMATICS

TARGET: JEE- Advanced 2023

CAPS-9 **BINOMIAL THEOREM**

SCQ (Single Correct Type):

1.	If a, b, c, d be fo	our consecutive	coefficients	in the binomial expansion	of $(1 + x)^n$, then value of
	the expression	$\left(\left(\frac{b}{b+c}\right)^2 - \frac{a}{(a+c)^2}\right)$	$\frac{ac}{b)(c+d)}$ (v	where x > 0 and n∈N) is	

- (A) Positive
- (B) negative
- (C) zero
- (D) depend on n
- The coefficient of x^{28} in the expansion of $(2 x^3 + x^6)^{30}$ is 2.
 - (A) 0
- (B) 1
- (C) 14
- (D) 28
- If each coefficient in the expansion of the expression $x(1+x)^n (n \in \mathbb{N})$ in powers of x is divided 3. by the exponent of corresponding power, then the sum of the values thus obtained is equal to
 - (A) $\frac{2^{n}}{n+1}$

- (B) $\frac{2^{n}-1}{n+1}$ (C) $\frac{2^{n}+1}{n+1}$ (D) $\frac{2^{n+1}-1}{n+1}$
- The number of distinct terms in the expansion of $(x+y^2)^{13} + (x^2+y)^{14}$ is _____. 4.
 - (A) 27
- (B) 29
- (C) 28
- (D) 25
- If $f(x) = \sum_{r=1}^{n} \left[r \left(n \cdot {^{n-1}C_{r-1}} r \cdot {^{n}C_{r-1}} \right) + \left(2r + 1 \right) {^{n}C_{r}} \right]$ then _____. 5.

- (A) $f(n) = n^2 1$ (B) $f(n) = (n+1)^2 1$ (C) $f(n) = (n+1)^2 + 1$ (D) $\sum_{n=0}^{10} f(n) = 374$
- $\text{If } \left(1+px+x^2\right)^n = 1 + a_1x + a_2x^2 + \ldots \\ + a_{2n}x^{2n}, \text{where } n \in \mathbb{N}, \ p \in \mathbb{R} \,. \ \text{If } p \ = \ -3 \ \text{and } n \ \text{is even}$ 6. number, then the value of $a_1 + 3a_2 + 5a_3 + 7a_4 + \dots + (4n-1)a_{2n}$ is _____.
 - (A) n
- (B) 2n −1
- (C) 2n 2
- (D) 2n
- If $6^{83} + 8^{83}$ is divided by 49, then the remainder is 7.
 - (A) 35
- (B) 5
- (C) 1
- The sum of the series $(1^2 + 1) \cdot 1! + (2^2 + 1) \cdot 2! + (3^2 + 1) \cdot 3! + \dots + (n^2 + 1) \cdot n!$ 8.
 - (A) (n + 1). (n + 2)! (B) $n \cdot (n + 1)$!
- (C) (n + 1) (n + 1)! (D) none of these

MCQ (One or more than one correct):

If $J_m = \sum_{r=3}^{m-3} {}^mC_r {}^mC_{r+3}$ and m_1 , m_2 are two values of m satisfying 5 $J_M = 3J_{M+1}$, then correct 9.

statement is/are (where [.] denotes greatest integer function

(A)
$$m_1 + m_2 = \frac{-8}{7}$$

(B)
$$m_1 m_2 = \frac{46}{7}$$

(C)
$$[(1-m_1)(1-m_2)] = 8$$

(D)
$$[(1+m_1)(1+m_2)] = 8$$

For natural number m, n if $(1 - y)^m (1 + y)^n = 1 + a_1 y + a^2 y^2 + ...$ and $a_1 = a_2 = 10$ then 10.

(C)
$$m + n = 80$$
 (D) $m - n = 20$

(D)
$$m - n = 20$$

11. Which of the following is/are true

(A)
$$5^6 - {}^5C_1.4^6 + {}^5C_2.3^6 - {}^5C_3.2^6 + {}^5C_4.1^6 = {}^6C_2.5$$

(B)
$$6^5 - {}^6C_1.5^5 + {}^6C_2.4^5 - {}^6C_3.3^5 + {}^6C_4.2^5 - {}^6C_1.1^5 = 0$$

(C)
$$6^6 - {}^6C_{1}.5^6 + {}^6C_{2}.4^6 - {}^6C_{3}.3^6 + {}^6C_{4}.2^6 - {}^6C_{5}.1^6 = 720$$

(D)
$$6^5 - {}^6C_1.5^5 + {}^6C_2.4^5 - {}^6C_3.3^5 + {}^6C_4.2^5 - {}^6C_5.1^5 = {}^5C_2.6$$

- In the expansion of $\left(x^3 + 3.2^{-\log_{\sqrt{z}}\sqrt{x^3}}\right)^{11}$ 12.
 - (A) there appears a term with the power x^2
 - (B) there does not appear a term with the power x^2
 - (C) there appears a term with the power x^{-3}
 - (D) the ratio of the co-efficient of x^3 to that of x^{-3} is 1/3
- If $(9 + \sqrt{80})^n = 1 + f$ where I, n are integers and 0 < f < 1, then 13.
 - (A) I is an odd integer
- (B) I is an even integer

(C)
$$(I + f) (1 - f) = 1$$

(D)
$$1 - f = (9 - \sqrt{80})^n$$

Comprehension Type Question:

Comprehension # 1

If
$$(1 + x + x^2)^{2n} = 1 + a_1x + a_2x^2 + \dots a_{4n}x^{4n}$$
, then

- **14.** The value of $\sum_{r=0}^{n-1} a_{2r}$, is

- (A) $\frac{9^n + 1 2a_{2n}}{4}$ (B) $\frac{9^n + 1 + 2a_{2n}}{4}$ (C) $\frac{9^n + 1 2a_n}{4}$ (D) $\frac{9^n 1 2a_{2n}}{4}$
- What value a2 takes? 15.
- (A) 2n C₂ (B) $^{2n+1}$ C₂ (C) $^{2n-1}$ C₂ (D) n C₂

Numerical based Questions:

- 16. If the coefficient of x^5 in $(1 + x)^{21} + (1 + x)^{22} + + (1+x)^{30}$ is λ $^nC_r + \mu$ mC_r , λ , μ , n, r, m being integers and nC_r , mC_r are binomial coefficients, then the value of $\lambda(n + r) + \mu(m + r)$ is
- 17. The value of $\sum_{r=0}^{9} \frac{{}^{10}C_r}{{}^{10}C_r + {}^{10}C_{r+1}}$ is equal to
- 18. When the terms in the binomial expansion of $\left(\sqrt{x} + \frac{1}{2x^{1/4}}\right)^n$ are arranged in decreasing powers of x, the coefficients of the first three terms are in arithmetic progression. The number of terms in the expansion with integer powers of x is _____.
- **19.** Find the coefficient of x^7 in $(1 x + 2x^3)^{10}$.
- **20.** Find the coeffcient of x^{49} in the polynomial

$$\left(x - \frac{C_1}{C_0}\right) \left(x - 2^2 \cdot \frac{C_2}{C_1}\right) \left(x - 3^2 \cdot \frac{C_3}{C_2}\right) \dots \left(x - 50^2 \cdot \frac{C_{50}}{C_{49}}\right) \quad \text{where } \ C_r = {}^{50}C_r \ .$$

Matrix Match Type:

21. Match the following:

Column – I

- (A) Number of distinct terms in the expansion of $(x+y-z)^{16}$ is (p) 2^{12}
- (B) Number of terms in the expansion of

$$\left(x + \sqrt{x^2 - 1}\right)^6 + \left(x - \sqrt{x^2 - 1}\right)^6$$
 is (q) 97

- (C) The number of irrational terms in $(\sqrt[8]{5} + \sqrt[6]{2})^{100}$ is (r) 4
- (D) The sum of numerical coefficients in the expansion of

$$\left(1+\frac{x}{3}+\frac{2y}{3}\right)^{12}$$
 is (s) 153

Options:

(A) A
$$\rightarrow$$
 (s); B \rightarrow (r); C \rightarrow (q); D \rightarrow (p)

(B) A
$$\rightarrow$$
 (s); B \rightarrow (r); C \rightarrow (p); D \rightarrow (q)

(C) A
$$\rightarrow$$
 (r); B \rightarrow (s); C \rightarrow (q); D \rightarrow (p)

(D) A
$$\rightarrow$$
 (s); B \rightarrow (q); C \rightarrow (r); D \rightarrow (p)

22. Match the following:

Column – I

(p) 18

- (A) The minimum value of a + b + c + d if $log_3(a+b) + log_3(c+d) \ge 4$ is
- (B) The number of distinct terms in the expansion of $\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^{14}$ is (q) 225
- (C) The remainder when (23)86 is divided by 100 is (r) 89
- (D) If the third term in the expansion of $\left(\frac{1}{x} + x^{\log l_{10} x}\right)^5$ is 1000 and x > 1,

then the value of x is (s) 100

- (A) A \rightarrow (p); B \rightarrow (q); C \rightarrow (s); D \rightarrow (r)
- (B) A \rightarrow (p); B \rightarrow (r); C \rightarrow (q); D \rightarrow (s)
- (C) $A \rightarrow (p)$; $B \rightarrow (q)$; $C \rightarrow (r)$; $D \rightarrow (s)$
- (D) A \rightarrow (q); B \rightarrow (p); C \rightarrow (r); D \rightarrow (s)

Subjective based Questions:

- 23. (a) Find the index of n of the binomial $\left(\frac{x}{5} + \frac{2}{5}\right)^n$ if the 9 the term of the expansion has numerically greatest coefficient (n \in N).
 - (b) For what positive value of x is the fourth term in the expansion of $(5 + 3x)^9$ is the greatest.
- **24.** Show that $(1.2) {}^{n}C_{2} + (2.3) {}^{n}C_{3} + \dots + (n-1) \cdot n {}^{n}C_{n} = n (n-1)2^{n-2}$
- 25. If a_1 , a_2 , a_3 ,, a_n are in A.P. and S_n is the sum of first n term's, show that $\sum_{k=0}^n {^nC_kS_k} = 2^{n-2}(na_1 + S_n)$
- **26.** Show that $S_1 = \sum_{r=1}^{2n} {}^{4n}C_{2r-1}(-1)^{r-1} = 0$
- 27. In the expansion of $(x + y)^n$, if the sum of odd term's be p and sum of even term's be q, then prove that
 - (i) $p^2 q^2 = (x^2 y^2)^n$
 - (ii) $4pq = (x + y)^{2n} (x y)^{2n}$