MATHEMATICS

TARGET: JEE- Advanced 2023

CAPS-8

Complex Number

SCQ (Single Correct Type):

The least value of $|z-3-4i|^2 + |z+2-7i|^2 + |z-5+2i|^2$ occurs when

$$(A) 1 + 3i$$

(B)
$$3 + 3i$$

$$(C) 3 + 4i$$

(D) none of these

2. |z-3i+4|+|z-ki+4|=k

(B)
$$\frac{1}{2}$$

(C)
$$\frac{3}{2}$$

(D) 2

If $|z|^2 + \overline{A}z^2 + A\overline{z}^2 + B\overline{z} + \overline{B}z + \overline{c} = 0$ represents a pair of intersecting lines with angle of 3. intersection θ then the value of |A| is

(A)
$$\tan \theta$$

(B)
$$\cos \theta$$

(C)
$$\sec \theta$$

(D)
$$\frac{\sec \theta}{2}$$

If $|z - z_1| = |z_1|$ and $|z - z_2| = |z_2|$ be the of two circles if the two circles touch each other then 4.

(A) Re
$$(z_1 z_2) = 0$$

(A) Re
$$(z_1 z_2) = 0$$
 (B) Re $\left(\frac{z_1}{z_2}\right) = 0$ (C) $I_m(z_1 z_2) = 0$ (D) $I_m\left(\frac{z_1}{z_2}\right) = 0$

(C)
$$I_m(z_1 z_2) = 0$$

(D)
$$I_m \left(\frac{z_1}{z_2} \right) = 0$$

If $|z_1| = 2$, $|z_2| = 3$, $|z_3| = 4$ and $|2z_1 + 3z_2 + 4z_3| = 4$, then absolute value of $8z_2z_3 + 27z_3z_1 + 27z_3z_1$ 5. 64z₁z₂ equals

(D) 96

If z = x + iy then the equation of a straight line Ax + By + C = 0 where A, B, C \in R, can be 6. written on the complex plane in the form $\bar{a}z + a\bar{z} + 2C = 0$ where 'a' is equal to :

(A)
$$\frac{(A + iB)}{2}$$

(B)
$$\frac{A - iB}{2}$$

(D) none

MCQ (One or more than one correct):

7. If from a point P, representing the complex number z_1 , on the curve |z| = 2, two tangents are drawn to the curve |z|=1, meeting the curve at points $Q(z_2)$ and $Q(z_3)$, then _____.

(A) the complex number $\frac{z_1 + z_2 + z_3}{3}$ will lie on the curve |z| = 1

(B)
$$\left(\frac{4}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}\right) \left(\frac{4}{\overline{z}_1} + \frac{1}{\overline{z}_2} + \frac{1}{\overline{z}_3}\right) = 9$$

(C)
$$arg\left(\frac{z_2}{z_3}\right) = \frac{2\pi}{3}$$

(D) orthocenter and circumcenter of $\triangle PQR$ will coincide

If z_1, z_2, z_3 are any three roots of the equation $z^6 = (z+1)^6$, then $arg\left(\frac{z_1-z_3}{z_2-z_3}\right)$ can be equal to 8.

(A) 0

(B) π

(C) $\frac{\pi}{4}$ (D) $-\frac{\pi}{4}$

 Z_1 , Z_2 are two complex numbers satisfying $i \mid z_1 \mid^2 z_2 - \mid z_2 \mid^2 z_1 = z_1 - iz_2$. Then which of the 9. following is/are correct.

(A) $\operatorname{Re}\left(\frac{z_1}{z_2}\right) = 0$

(B) $I_m \left(\frac{z_1}{z_2} \right) = 0$

(C) $Z_1\overline{Z}_2 + \overline{Z}_1Z_2 = 0$

- (D) $|z_1||z_2|=1$ or $|z_1|=|z_2|$
- The curve represented by $z = \frac{3}{2 + \cos \theta + i \sin \theta}$, $\theta \in [0, 2\pi)$ 10.

(A) never meets the imaginary axis

(B) meets the real axis in exactly two points

(C) has maximum value of |z| as 3

(D) has minimum value of |z| as 1

Numerical based Questions:

- 11. complex number such that $|z_1| = |z_2| = |z_3| = 1$ and z_1, z_2, z_3 be three $\frac{z_1^2}{z_2 z_3} + \frac{z_2^2}{z_1 z_2} + \frac{z_3^2}{z_1 z_2} + 1 = 0$, then sum of possible values of $|z_1 + z_2 + z_3|$ is _____.
- If the vertices of a triangle ABC, A (z_1) , B (z_2) and C (z_3) lie on the circle |z-3|=16, such that 12. $z_1 + z_2 + z_3 = 9$, then the value of $\frac{z_1 \tan A + z_2 \tan B + z_3 \tan C}{\tan A \tan B \tan C}$ is equal to _____.
- If ω is a non-real complex root of $z^{28} = 1$ and such that $|\omega| + 1$ is maximum and $x = \frac{1}{2} |\omega \frac{1}{\omega}|$, 13. then $8x^4 + 4x^3 - 8x^2 - 3x + 4$ is equal to _____
- Let z_1 , z_2 , z_3 be complex numbers such that z_1+ z_2+ $z_3=$ 0 and $|z_1|=|z_2|=|z_3|$ then 14. $Z_1^2 + Z_2^2 + Z_3^2$ is _____.
- Let 1 $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_{10}$ be the eleven 11th roots of unity. Let $\lambda = \sum_{r=1}^{10} r(\alpha_r + \alpha_{11-r})$. The value of 15. $\frac{\lambda+11}{11}$ equals
- If a and b are positive integer such that $N = (a + ib)^3 107i$ is a positive integer then find the 16. value of $\frac{N}{2}$

- 17. Let z,w be complex numbers such that $\overline{z} + i\overline{w} = 0$ and arg $zw = \pi$. If Re(z) < 0 and principal arg $z = \frac{a\pi}{b}$ then find the value of a + b. (where a & b are co-prime natural numbers)
- 18. Let z is a complex number satisfying the equation, $z^3 (3 + i) z + m + 2i = 0$, where $m \in R$. Suppose the equation has a real root α , then find the value of $\alpha^4 + m^4$
- **19.** If $x = 9^{1/3} 9^{1/9} 9^{1/27} ... \infty$, $y = 4^{1/3} 4^{-1/9} 4^{1/27} ... \infty$, and $z = \sum_{r=1}^{\infty} (1+i)^{-r}$ and principal argument of $P = (x 1)^{-r}$

+ yz) is $-\tan^{-1}\left(\frac{\sqrt{a}}{b}\right)$ then determine $a^2 + b^2$. (where a & b are co-prime natural numbers)

- **20.** $z_1, z_2 \in c \text{ and } z_1^2 + z_2^2 \in R,$ $z_1(z_1^2 3z_2^2) = 2, z_2(3z_1^2 z_2^2) = 11$ If $z_1^2 + z_2^2 = \lambda$ then determine λ^2
- 21. Let |z| = 2 and $w = \frac{z+1}{z-1}$ where z, $w \in C$ (where C is the set of complex numbers), then find product of maximum and minimum value of |w|.
- 22. If ω and ω^2 are the non-real cube roots of unity and a, b, $c \in R$ such that $\frac{1}{a+\omega} + \frac{1}{b+\omega} + \frac{1}{c+\omega} = 2\omega^2$ and $\frac{1}{a+\omega^2} + \frac{1}{b+\omega^2} + \frac{1}{c+\omega^2} = 2\omega$. If $\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} = \lambda$ then determine λ^4

Matrix Match Type:

23. Match the following:

Consider the two circles in the complex plane

$$C_1: \left|\frac{z+i}{z-1}\right| = 2$$

$$C_2: z\overline{z} - (3+4i)z - (3-4i)\overline{z} + 9 = 0$$

Let $\left(\alpha_{\text{\tiny 1}},\beta_{\text{\tiny 1}}\right)$ be the centre of C_1 and $\;\left(\alpha_{\text{\tiny 2}},\beta_{\text{\tiny 2}}\right)$ be that of C_2

Column-I

Column-II

(A) $2\alpha_1 + \beta_1$ equals

(p) 11

(B) $\alpha_2 - 2\beta_2$ euqals

- (q) 3
- (C) The radius of circle C₁ equals
- (r) 4
- (D) The radius of circle C₂ equals
- (s) $\frac{2\sqrt{2}}{3}$
- (t) 2

Options:

- (A) $A \rightarrow q$; $B \rightarrow p$; $C \rightarrow s$; $D \rightarrow r$;
- (B) $A \rightarrow g$; $B \rightarrow r$; $C \rightarrow s$; $D \rightarrow p$;
- (C) $A \rightarrow q$; $B \rightarrow s$; $C \rightarrow p$; $D \rightarrow r$;
- (D) $A \rightarrow p$; $B \rightarrow q$; $C \rightarrow s$; $D \rightarrow r$;

Subjective based Questions:

- 24. If z_1 and z_2 are the two complex numbers satisfying |z 3 4i| = 8 and $Arg\left(\frac{z_1}{z_2}\right) = \frac{\pi}{2}$ then find the range of the values of $|z_1 z_2|$.
- 25. Let a, b, c be distinct complex numbers such that $\frac{a}{1-b} = \frac{b}{1-c} = \frac{c}{1-a} = k$, (a, b, c ≠ 1). Find the value of k.