MATHEMATICS

TARGET: JEE- Advanced 2023

CAPS-7

Determinants and System of Equations

SCQ (Single Correct Type):

1.	The number	of positive	integral	solutions	(x, y,	z) of	the equation
----	------------	-------------	----------	-----------	--------	-------	--------------

$$\begin{vmatrix} x^{3} + 1 & x^{2}y & x^{2}z \\ xy^{2} & y^{3} + 1 & y^{2}z \\ xz^{2} & yz^{2} & z^{3} + 1 \end{vmatrix} = 11 \text{ is}_{\underline{}}$$
(A) 0 (B) 3 (C) 6 (D) 12

- If x = a, y = b, z = c is a solution of the system of linear equations x + 8y + 7z = 0, 9x + 2y + 3z = 0, x + y + z = 0 such that the point (a, b, c) lies on the plane x + 2y + z = 6, then 2a + b + c equals:
 - (A) 1 (B) 0 (C) 1 (D) 2
- 3. Let $A = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ such that |A| = 0. If a, b, c are distinct, then the sum of the coordinates of

the fixed point through which the line ax + by + c = 0 passes is

- (A) 2
- (C) 4
- (D) 5
- 4. If a system of the equation $(\alpha + 1)^3 x + (\alpha + 2)^3 y$ $(\alpha + 3)^3 = 0$ and $(\alpha + 1) x + (\alpha + 2) y$ $(\alpha + 3) = 0$, x + y 1 = 0 is consistent, then the value(s) of α is/are
 - (A) 1
- (B) 0

(B)3

- (C) 3
- (D) 2
- 5. If a, b, c are complex numbers and $z = \begin{vmatrix} 0 & -b & -c \\ \overline{b} & 0 & -a \\ \overline{c} & \overline{a} & 0 \end{vmatrix}$ is
 - (A) purely real (B) purely imaginary
- (C) 0
- (D) none of these
- $\textbf{6.} \qquad \text{If } f(x) = \log_{10} x \text{ and } g(x) = e^{i\pi x} \text{ and } h(x) = \begin{vmatrix} f(x)g(x) & [f(x)]^{g(x)} & 1 \\ f(x^2)g(x^2) & [f(x^2)]^{g(x^2)} & 0 \\ f(x^3)g(x^3) & [f(x^3)]^{g(x^3)} & 1 \end{vmatrix} \text{, then the value of } h(x) = \begin{vmatrix} f(x)g(x) & [f(x)]^{g(x)} & 1 \\ f(x^3)g(x^3) & [f(x^3)]^{g(x^3)} & 1 \end{vmatrix}$
 - h(10) is (A) 0
- (B) 2
- (C) 1
- (D) 4

ax+2y+5z=1

2x+y+3z=1

3y+7z=1

is consistent. Then the set S is :

- (A) equal to R
- (B) equal to R {1}
- (C) equal to {1}
- (D) an empty set

8. Let α, β, γ are the real roots of the equation $x^3 + ax^2 + bx + c = 0$ (a, b, $c \in R$ and $a \ne 0$).

If the system of equations (in u, v and w) given by

$$\alpha u + \beta v + \gamma w = 0$$

$$\beta u + \gamma v + \alpha w = 0$$

$$\gamma u + \alpha v + \beta w = 0$$

has non-trivial solutions, then a2 equals

9. For a unique value of p and q, the system of equations given by

$$x + y + z = 6$$

$$x+2y+3z=14$$

$$2x + 5y + pz = q$$

has infinitely many solutions, then the value of (p+q) is equal to

MCQ (One or more than one correct):

10. Consider the system of equations

$$ax_1 + x_2 + x_3 = 1$$

$$x_1 + ax_2 + x_3 = 1$$

$$x_1 + x_2 + ax_3 = 1$$

then:

(A) if a = 2, then the system has unique solution.

(B) if a = 1, then the system has infinite solution.

(C) if a = 2, then the system has no solution.

(D) if a = 2, then the system has infinite solution.

Comprehension Type Question:

Comprehension # 1

For
$$\alpha$$
, β , γ , $\theta \in R$. Let

$$A_{\theta}(\alpha, \beta, \gamma) = \begin{vmatrix} \cos(\alpha + \theta) & \sin(\alpha + \theta) & 1\\ \cos(\beta + \theta) & \sin(\beta + \theta) & 1\\ \cos(\gamma + \theta) & \sin(\gamma + \theta) & 1 \end{vmatrix}$$

11. If $a = A_{\pi/2}(\alpha, \beta, \gamma)$, $b = A_{\pi/3}(\alpha, \beta, \gamma)$. Which of the following is true

$$(A) a = b$$

(D)
$$2a = b$$

12. $A_{\theta}^2 + A_{\phi}^2 = 2(A_{\theta+\phi})^2$ equals

(A)
$$2A_{\theta}A_{\phi}$$

(B)
$$A_{\theta} + A_{\phi}$$

(C)
$$A_{\theta}$$
 A_{ϕ}

(D) None of these

- 13. If α , β , γ are fixed, then $y = A_X(\alpha, \beta, \gamma)$ represents
 - (A) a straight line parallel to x-axis
 - (B) a straight line through the origin
 - (C) a parabola with vertex at origin
 - (D) None of these

Comprehension # 2

Consider the system of equations:

$$ax + 4y + z = 0$$

$$2y + 3z = 0$$

$$3x bz + 2 = 0$$

Then

14. The given system of equations will have a unique solution if

(A)
$$ab = 15$$

(B)
$$ab \neq 15$$

(C)
$$ab = 5$$

(D)
$$a \neq 5$$

15. The system of equations will have infinite solutions if

(A)
$$a = 3$$
, $b = 2$

(B)
$$a = 3$$
, $b = 4$

(C)
$$a = 5$$
. $b = 3$

(B)
$$a = 3, b = 4$$
 (C) $a = 5, b = 3$ (D) $a = 3, b = 5$

16. The given system of the equations will have no solution if

(A)
$$ab = 15$$
, $a \ne 3$

(B)
$$ab \neq 15, a \neq 3$$

(C)
$$ab \neq 15$$
, $a = 3$

Numerical based Questions:

17. If
$$\begin{vmatrix} 1 & x & x^2 \\ x & x^2 & 1 \\ x^2 & 1 & x \end{vmatrix} = 3$$
 then the value of $\begin{vmatrix} x^3 - 1 & 0 & x - x^4 \\ 0 & x - x^4 & x^3 - 1 \\ x - x^4 & x^3 - 1 & 0 \end{vmatrix}$ is ____.

18. If D =
$$\begin{vmatrix} 10! & 11! & 12! \\ 11! & 12! & 13! \\ 12! & 13! & 14! \end{vmatrix}$$
 = then find the units digit of $\frac{D}{(10!)^3}$

19. Total number of 2 x 2 determinants whose entries are from the set { 1, 0, 1} has value equal to 1 is N. Then Sum of digits of N is:

20. If
$$x \neq 0, y \neq 0, z \neq 0$$
 and $\begin{vmatrix} 1+2x & 1+x & 1+x \\ 1+2y & 1+3y & 1+y \\ 1+2z & 1+2z & 1+4z \end{vmatrix} = 0$, then the value of $x^{-1} + y^{-1} + z^{-1} + 9$ is

21. If
$$\begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} \ge 0$$
, where a, b, $c \in \mathbb{R}^+$ {0}, then $\frac{a+b}{c}$ is

22. If
$$a_1$$
, a_2 , a_3 , 5, 4, a_6 , a_7 , a_8 , a_9 are in H.P. and $D = \begin{vmatrix} a_1 & a_2 & a_3 \\ 5 & 4 & a_6 \\ a_7 & a_8 & a_9 \end{vmatrix}$, then the value of 21D is

(Where [.] represents, the greatest integer function)

- 23. The absolute value of a for which system of equations, $a^3x + (a + 1)^3y + (a + 2)^3z = 0$, ax + (a + 1)y + (a + 2)z = 0, x + y + z = 0, has a non-zero solution is:
- 24. Consider the system of equations

$$x + y + z = 4$$

$$2x + y + 3z = 6$$

$$x + 2y + pz = q$$

Let L denotes the value of p if the system of equations has no solution. and M denotes the value of q if the system of equations has infinite solutions.

Find the unit digit of $(L^2 + M^2)$.

- **26.** Let the matrix A and B be defined as $A = \begin{bmatrix} 3 & 2 \\ 2 & \alpha \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 1 \\ 7 & 3 \end{bmatrix}$. If $det(2A^9 B^{-1}) = 2$,

then find the number of distinct possible real values of α .

27. Let A_n and B_n be square matrices of order 3, which are defined as

$$A_n = [a_{ij}] \text{ and } B_n = [b_{ij}] \text{ where } a_{ij} = \frac{2i+j}{3^{2n}} \text{ and } b_{ij} = \frac{3i-j}{2^{2n}} \text{ for all } i \text{ and } j, \ 1 \leq i, \ j \leq 3.$$

If
$$I = \lim_{n \to \infty} \text{Tr.} \left(3A_1 + 3^2 A_2 + 3^3 A_3 + \dots + 3^n A_n \right)$$

and
$$m = \lim_{n \to \infty} Tr. (2B_1 + 2^2B_2 + 2^3B_3 + + 2^nB_n),$$

then find the value of (I + m).

[Note: Tr. (P) denotes the trace of matrix P.]

Matrix Match Type:

28. Consider a square matrix A of order 2 which has its elements as 0,1,2 and 4. Let N denote the number of such matrices.

Column - A Column - B

(A) Possible non-negative value of det(A) is

- (P) 2
- (B) Sum of values of determinants corresponding to N matrices is
- (Q) 4
- (C) If absolute value of (det(A)) is least, then possible value of | adj(adj(adj A)) | (R)
- (R) 2
- (D) If det (A) is algebraically least, then possible value of det(4A 1) is
- (S) 0
- (T) 8

Subjective Type Questions:

constant.

- 29. If the system of equations x = cy + bz, y = az + cx and z = bx + ay has a non-zero solution and at least one of a, b, c is a proper fraction, prove that $a^2 + b^2 + c^2 < 3$ and abc > 1.
- 30. $\Delta = \begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix}$, Show that minimum value of Δ is $27a^2b^2$. Given ab is
- 31. If t is real and $\lambda = \frac{t^2 3t + 4}{t^2 + 3t + 4}$, then find number of solutions of the system of equations 3x + 4z = 3, x + 2y + 3z = 2, $6x + 5y + \lambda z = 3$ for a particular value of λ .