MATHEMAI

CAPS-6

Matrices & Determinant

TARGET: JEE- Advanced 2023

SCQ (Single Correct Type):

1. Let
$$a = \lim_{x \to 1} \frac{x}{\ln x} - \frac{1}{x \ln x}$$
; $b = \lim_{x \to 0} \frac{x^3 - 16x}{4x + x^2}$; $c = \lim_{x \to 0} \frac{\ln(1 + \sin x)}{x}$ and

$$d = \lim_{x \to -1} \frac{(x+1)^3}{3(\sin(x+1) - (x+1))}$$
, then the matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is

- (A) Idempotent
- (B) Involutary
- (C) Non singular
- (D) Nilpotent

2. A is a 2 × 2 matrix such that A
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
 and A² $\begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Find the sum of the elements

of A.

- (A) -1
- (B) 0
- (C) 2
- (D) 5

3. Matrix A satisfies
$$A^2 = 2A - I$$
 where I is the identity matrix then for $n \ge 2$, A^n is equal to $(n \in N)$

$$(A) nA - I$$

(B)
$$2^{n-1}A - (n-1)I$$
 (C) $nA - (n-1)I$

(C)
$$nA - (n - 1)$$

(D)
$$2^{n-1}A - I$$

4. If
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix}$$
, $A^{-1} = \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ -4 & 3 & c \\ 5/2 & -3/2 & 1/2 \end{bmatrix}$, then

(A)
$$a = 1$$
, $c = -7$

(B)
$$a = 2$$
, $c = -\frac{1}{2}$

(C)
$$a = -1$$
, $c = 1$

(A)
$$a = 1$$
, $c = -1$ (B) $a = 2$, $c = -\frac{1}{2}$ (C) $a = -1$, $c = 1$ (D) $a = \frac{1}{2}$, $c = \frac{1}{2}$

5. The number of solution of the matrix equation
$$X^2 = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$$
 is

- (A) more than 2
- (B) 2
- (C) 1
- (D) 0

6. 'A' is a
$$3 \times 3$$
 matrix with entries from the set $\{-1,0,1\}$. The probability that 'A' is neither symmetric nor skew symmetric is

(A)
$$\frac{3^9 - 3^6 - 3^3 + 1}{3^9}$$
 (B) $\frac{3^9 - 3^6 - 3^3}{3^9}$ (C) $\frac{3^9 - 1}{3^{10}}$

(B)
$$\frac{3^9-3^6-3^3}{3^9}$$

(C)
$$\frac{3^9-1}{3^{10}}$$

(D)
$$\frac{3^9-3^3+1}{3^9}$$

 $A = \begin{vmatrix} a & b \\ b & -a \end{vmatrix}$ and $MA = A^{2m}$, $m \in N$ for some matrix M, then which one of the following is 7.

correct?

(A)
$$M = \begin{bmatrix} a^{2m} & b^{2m} \\ b^{2m} & -a^{2m} \end{bmatrix}$$

(B)
$$M = (a^2 + b^2)^m \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

(C)
$$M = (a^m + b^m) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(D)
$$M = (a^2 + b^2)^{m-1} \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$$

8. Let 'A' and 'B' be two given matrices such that AB = A and BA = B, then A² B² equals

- (A) A
- (B) B
- (C) I
- (D) 0

MCQ (One or more than one correct):

P is a non-singular matrix and A, B are two matrices such that $B = P^{-1}$ AP then the true 9. statements among the following are

(A) A is invertible iff B is invertible

- (B) $B^n = P^{-1} A^n P \forall n \in \mathbb{N}$
- (C) $\forall \lambda \in R, B \lambda I = P^{-1} (A \lambda I)P$ (I is the identity matrix)

(D) A,B are both singular matrices

10. If A and B are respectively a symmetric and a skew symmetric matrix such that AB = BA then

(A) $(A - B)^{-1}$ (A + B) is orthogonal matrix when (A - B) is non-singular

(B) $(A + B)^{-1} (A - B)$ is orthogonal matrix when (A + B) is non-singular

(C) det $[(A - B)^{-1} (A + B)] = 1$ and det $[(A + B)^{-1} (A - B)] = -1$

(D) det $[(A - B)^{-1} (A + B)] = -1$ and det $[(A + B)^{-1} (A - B)] = 1$

If $A = \begin{bmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{bmatrix}$ (where $\alpha_2 \neq \beta_1$ and α_1 , α_2 , β_1 , β_2 are non-zero) satisfies the equation 11.

 $x^2 + k = 0$, then

- (A) trace A = 0
- (B) $\alpha_1 \beta_2 < 0$
- (C) det A = k (D) det A = -k

12. Let A is a $n \times n$ matrix in which diagonal elements are 1,2,3,....,n

> (i.e., $a_{11} = 1$, $a_{22} = 2$, $a_{33} = 3$, ... $a_{ii} = i$,... $a_{nn} = n$) and all other elements are equal to 'n ' then

(A) A_n is singular for all 'n '

(B) A_n is non-singular for all 'n '

(C) det $.A_5 = 120$

(D) det . $A_n = 0$

- 13. If the matrix A and B are of 3×3 and $(I - AB)^{-1}A$ is invertible, then which of the following statements is/are correct?
 - (A) I BA is not invertible
 - (B) I BA is invertible
 - (C) I BA has for its inverse I + $B(I AB)^{-1}A$
 - (D) I BA has for its inverse I + $A(I BA)^{-1}B$
- 14. If A, B are two square matrices of same order such that A + B = AB and I is identity matrix of order same as that of A, B, then
 - (A) AB = BA

- (B) |A I| = 0 (C) $|B I| \neq 0$ (D) |A B| = 0

Comprehension Type Question:

Omprehension #1

A Pythagorean triple is triplet of positive integers (a, b, c) such that $a^2 + b^2 = c^2$. Define the matrices A, B and C by

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 2 \\ -2 & -1 & -2 \\ 2 & 2 & 3 \end{bmatrix} \text{ and } C = \begin{bmatrix} -1 & -2 & -2 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \end{bmatrix}$$

- 15. If we write Pythagorean triples (a, b, c) in matrix form as [a, b, c] then which of the following matrix product is not a Pythagorean triplet?
 - (A) [3,4,5]A
- (B) [3,4,5]B
- (C) [3,4,5]C
- (D) None of these

- 16. Which one of the following does not hold good?
 - (A) $A^{-1} = adi. A$

(B) $(AB)^{-1} = adi. (AB)$

(C) $(BC)^{-1} = adj. (BC)$

(D) $(ABC)^{-1} \neq adj. (ABC)$

- $Tr(A + B^T + 3C)$ equals **17**.
 - (A) 17
- (B) 15
- (C) 19
- (D) 18

Omprehension # 2

Consider the matrix function

$$A(x) = \begin{bmatrix} \cos^{-1} x & \sin^{-1} x & \cos ec^{-1} x \\ \sin^{-1} x & \sec^{-1} x & \tan^{-1} x \\ \cos ec^{-1} x & \tan^{-1} x & \cot^{-1} x \end{bmatrix}$$

and B = A^{-1} . Also, det.(A(x)) denotes the determinant of square matrix A(x).

18. Which of the following statement(s) is(are) correct?

(A)
$$A(-x) = A(x)$$
.

(B)
$$A(x) + A(-x) = \pi I_3$$

(C)
$$A(-x) = -A(x)$$
.

(D)
$$A(x) + A(-x) = -\pi I_3$$

[Note: I₃ denotes an identity matrix of order 3.]

- **19.** Which of the following statement(s) is (are) correct?
 - (A) A(x) is a symmetric matrix.
- (B) A(x) is a skew symmetric matrix.
- (C) Maximum value of det.(A(x)) equals $\frac{\pi^3}{8}$ (D) Minimum value of det.(A(x)) equals $\frac{\pi^3}{16}$.
- 20. Which of the following statement(s) is(are) correct?
 - (A) det.(A(x)) is a continuous function in its domain but not differentiable in its domain.
 - (B) det.(A(x)) is a continuous and differentiable function in its domain.
 - (C) det.(A(x)) is a bounded function.
 - (D) det.(A(x)) is one-one and odd function.
- **21.** Which of the following statement(s) is(are) correct?
 - (A) If a = det. (B) + det. (B²) + det. (B³) + ∞ , then minimum value of a equals $\frac{8}{\pi^3 8}$.
 - (B) If b = det. adj. (B) + det. adj. (B²) + det. adj. (B³) + ∞ , then maximum value of b is $\frac{256}{\pi^6 256}$.
 - (C) If $a = \det(B) + \det(B^2) + \det(B^3) + \ldots \infty$, then maximum value of a equals $\frac{16}{\pi^3 16}$.
 - (D) If $b = \det$ adj. (B) + det. adj. (B²) + det. adj. (B³) + ∞ , then minimum value of b is $\frac{64}{\pi^6 64}$.

Numerical based Questions:

22. If $(\alpha\beta)(\delta\beta) = \gamma\gamma\gamma$ such that $\alpha, \beta, \delta, \gamma$ represents a number from 1 to 9 & $\alpha, \beta, \delta, \gamma$ are all different digits & $\alpha\beta, \delta\beta$ are two digit numbers & $\gamma\gamma\gamma$ is a three digit number , $\alpha > \delta$, and the trace of the matrix

$$A = \begin{bmatrix} \alpha & 1 & 2 & 0 \\ 0 & \beta & 1 & 1 \\ 0 & 0 & \gamma & 3 \\ 1 & 1 & 0 & \gamma \end{bmatrix} \text{ is a, then } \frac{a}{7} \text{ is equal to}$$

23. Let A be the set of all 3×3 symmetric matrices all of whose entries either 0 or 1. Five of these entries are 1 and four of them are 0. If n is the number of such matrices, then n/2 is

Matrix Match Type:

24. Match the following:

For 3×3 matrix, a_{ij} represents the elements of i^{th} row and j^{th} column.

Column-I		Column-II		
Α	$a_{ij} + a_{jk} + a_{ki} = 0, \text{ then}$	р	This represents a symmetric matrix	
В	$a_{ij} - a_{jk} - a_{ki} = 0, \text{ then}$	q	This represents a skew symmetric matrix	
С	$(-1)^{i+j} a_{ij} + (-1)^{j+k} a_{jk} + (-1)^{k+i}$	r	This represents a matrix whose all	
	$a_{ki} = 0$, then		diagonal elements are zeros	
		S	Value of determinant is zero	

Code:

(A) A
$$\rightarrow$$
 (q, r, s); B \rightarrow (p, q, r, s); C \rightarrow (q, r, s)

(B)
$$A \rightarrow (q, s)$$
; $B \rightarrow (p, q, r, s)$; $C \rightarrow (q, r, s)$

(C)
$$A \rightarrow (q, r, s)$$
; $B \rightarrow (p, q, s)$; $C \rightarrow (q, r, s)$

(D)
$$A \rightarrow (q, r, s)$$
; $B \rightarrow (p, q, r, s)$; $C \rightarrow (q, s)$

25. Match the following:

Column-I			Column-II	
Α	If $ A = 2$ then $ 2A^{-1} =$ (where A is a	р	1	
	matrix of order 3)			
В	If $ A = \frac{1}{8}$ then $ adj(adj2A) = (where A)$	q	4	
	is matrix of order 3)			
С	If $(A + B)^2 = A^2 + B^2$ and $ A = 2 & B =$	r	Does not exist	
	(where A and B are matrices of odd			
	order)			
D	$ A_{2\times 2} = 2$, $ B_{3\times 3} = 3$ and $ C_{4\times 4} = 4$ &	S	0	
	ABC =			

Code:

(A)
$$A \rightarrow q$$
; $B \rightarrow p$; $C \rightarrow s$; $D \rightarrow r$

(B)
$$A \rightarrow q$$
; $B \rightarrow r$; $C \rightarrow p$; $D \rightarrow s$

(C)
$$A \rightarrow q$$
; $B \rightarrow r$; $C \rightarrow r$; $D \rightarrow s$

(D)
$$A \rightarrow q$$
; $B \rightarrow q$; $C \rightarrow s$; $D \rightarrow r$