IATHEMATICS

TARGET: JEE- Advanced 2023

CAPS-5

Sequence & Series

SCQ (Single Correct Type):

The sequence a_1 , a_2 , a_3 ,...... satisfies $a_1 = 1, a_2 = 2$ and $a_{n+2} = \frac{2}{a} + a_n$, n = 1, 2, 3, ... the 1.

value of $\frac{2^{2009}}{2011} \cdot a_{2012}$ is

(A)
$$^{2010}C_{1005}$$

(B)
$$^{2011}C_{1006}$$

(C)
$$^{2011}C_{1005}$$

(D) ²⁰¹²C₁₀₀₆

Let a_1 , a_2 , a_3 , a_n be in G.P. If the area bounded by the curves $y^2 = 4a_nx$ and 2. $y^2 = 4a_n (a_n - x)$ be A_n , then the sequence A_1 , A_2 , A_3 ,, A_n are in

(D) None of these

The sum of first 'n' terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$ is 3.

(A)
$$2^{n-1}$$

(B)
$$1 - 2^{-n}$$

(C)
$$2^{-n} - n + 1$$

(D)
$$2^{-n} + n - 1$$

Find the value of $\sum_{r=1}^{n} \sum_{s=1}^{n} \delta_{rs} 2^{r} 3^{s}$ where $\begin{cases} \delta_{rs} = 0, & \text{if } r \neq S \\ \delta_{rs} = 1, & \text{if } r = S \end{cases}$ 4.

(A)
$$\frac{6}{5}(6^n-1)$$
 (B) 6^n-1

(C)
$$\frac{1}{5}(6^n-1)$$

(D) None of these

Value of $\sum_{r=1}^{\infty} \frac{1}{r(r+1)(r+2)(r+3)} =$ _____ 5.

(D) 0

If α , γ are the roots of t_1 x^2 – 4x +1= 0 and β , δ are the roots of t_2x^2 – 6x + 1 = 0 and α , β , γ , δ 6. are in H.P. then

(A)
$$-t_1 + t_2 = 5$$
 (B) $t_1 + t_2 = 12$

(B)
$$t_4 + t_2 = 12$$

(C)
$$t_1 = 8$$

(D)
$$t_2 = 5$$

If $1^2 + 2^2 + 3^2 + \dots + 2003^2 = (2003)(4007)(334)$ and 7.

 $(1) (2003) + (2) (2002) + (3) (2001) + \dots + (2003) (1) = (2003) (334) (x)$, then x equals

MCQ (One or more than one correct):

8. Consider the sequence a_n given by $a_1 = \frac{1}{2}, a_{n+1} = a_n^2 + a_n$,

Let $S_n = \frac{1}{a_1 + 1} + \frac{1}{a_2 + 1} + \dots + \frac{1}{a_n + 1}$ then find the value of $[S_{2012}]$, where [.] denotes greatest integer function.

- (A) 1
- (B) [e / 2]
- (C) [e]
- (D) $[\pi 1]$
- **9.** Given that x + y + z = 15 when a, x, y, z, b are in A. P. and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{5}{3}$ when a, x, y, z, b

are in H. P. Then

(A) G. M. of a and b is 3

(B) one possible value of (a + 2b) is 11

(C) A. M. of a and b is 5

- (D) H. M. of a and b is $\frac{9}{5}$
- 10. The product of two positive real numbers a and b is 192. The quotient of A.M. by H.M. of their G.C.D and L.C.M is $\frac{169}{48}$. The smaller of a and b can be
 - (A) 2
- (B) 4
- (C) 6
- (D) 12
- 11. Let a, b, c are distinct real numbers such that expression $ax^2 + bx + c$, $bx^2 + cx + a$ and $cx^2 + ax + b$ are always positive then possible value(s) of $\frac{a^2 + b^2 + c^2}{ab + bc + ca}$ may be:
 - (A) 1
- (B) 2
- (C) 3
- (D) 4
- **12.** For \triangle ABC, if 81+144a⁴ +16b⁴ + 9c⁴ =144abc, (where notations have their usual meaning), then
 - (A) a > b > c

(B) A < B < C

(C) Area of $\triangle ABC = \frac{3\sqrt{3}}{8}$

- (D) Traiangle ABC is right handled
- 13. Let x, y, $z \in \left(0, \frac{\pi}{2}\right)$ are first three consecutive terms of an arithmetic progression such that cos $x + \cos y + \cos z = 1$ and $\sin x + \sin y + \sin z = \frac{1}{\sqrt{2}}$, then which of the following is/are correct?
 - (A) $\cot y = \sqrt{2}$

(B) $\cos(x-y) = \frac{\sqrt{3} - \sqrt{2}}{2\sqrt{2}}$

(C) $\tan 2y = \frac{2\sqrt{2}}{3}$

(D) $\sin(x-y) + \sin(y-z) = 0$

- 14. a_1 , a_2 are distinct terms of an A.P. We call (p, q, r) an increasing triad if a_p , a_q , a_r are in G.P. where p,q,r \in N such that p < q < r . If (5, 9, 16) is an increasing triad, then which of the following option is/are correct
 - (A) If a₁ is a multiple of 4 then every term of the A.P. is an integer
 - (B) (85, 149, 261) is an increasing triad
 - (C) If the common difference of the A.P. is $\frac{1}{4}$, then its first term is $\frac{1}{3}$
 - (D) Ratio of the (4k + 1)th and 4kth term can be 4

Numerical based Questions:

15. If
$$\frac{25}{k} = 1^2 - \frac{2^2}{5} + \frac{3^2}{5^2} - \frac{4^2}{5^3} + \frac{5^2}{5^4} - \frac{6^2}{5^5} + \dots \infty$$
, then find the value of k

- **16.** A man arranges to pay off a debt of Rs. 3600 by 40 annual installments which form an arithmetic series. When 30 of the installments are paid he dies leaving a third of the debt unpaid. Find the value of the first installment.
- **17.** If x > 0, and $\log_2 x + \log_2 \left(\sqrt[4]{x} \right) + \log_2 \left(\sqrt[4]{x} \right) + \log_2 \left(\sqrt[8]{x} \right) + \log_2 \left(\sqrt[16]{x} \right) + \dots = 4$, then find x.
- 18. If $x_i > 0$, i = 1, 2, ..., 50 and $x_1 + x_2 + ... + x_{50} = 50$, then find the minimum value of $\frac{1}{x_1} + \frac{1}{x_2} + + \frac{1}{x_{50}}.$
- 19. The number of terms in an A.P. is even; the sum of the odd terms is 24, sum of the even terms is 30, and the last term exceeds the first by 10½; find the number of terms.
- **20.** If a, b, c are in GP, a b, c a, b c are in HP, then the value of a + 4b + c is
- **21.** If $S = \frac{5}{13} + \frac{55}{(13)^2} + \frac{555}{(13)^3} + \frac{5555}{(13)^4} + \dots$ up to ∞ , then find the value of 36S.
- **22.** If $S = \frac{1}{1+1^2+1^4} + \frac{2}{1+2^2+2^4} + \frac{3}{1+3^2+3^4} + \dots \infty$, then find the value of 14S.

Matrix Match Type:

23. Match Column I with Column II:

Column-I		Column-II	
Α	$\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{k+1}}$ is equal to	р	1
В	$\lim_{n\to\infty}\sum_{k=1}^n\frac{6^k}{\left(3^k-2^k\right)\!\left(3^{k+1}-2^{k+1}\right)}\text{is equal}$ to	q	2
С	$\lim_{n\to\infty} \sum_{k=1}^{n} \frac{k^2 - \frac{1}{2}}{k^4 + \frac{1}{4}}$ is equal to	r	3
D	$x_1 = \frac{1}{2}$ and $x_{k+1} = x_k^2 + x_{k-1}^2 T = \sum_{k=1}^{n} \frac{1}{x_i + 1}$ then [T] is equal to (where [.] denotes	S	-1
	G.I.F.)		
		t	0

Code:

(A) A-p; B-r; C-q; D-s

(B) A-r; B-p; C-s; D-r

(C) A-p; B-q; C-p; D-p

(D) A-r; B-p; C-q; D-r

Subjective Type Questions:

- 24. In an A.P. of which 'a' is the lst term, if the sum of the lst 'p' terms is equal to zero, show that the sum of the next 'q' terms is $-\frac{a(p+q)q}{p-1}$.
- **25.** The sum of first p-terms of an A.P. is q and the sum of first q terms is p, find the sum of first (p + q) terms.