MATHEMATICS

TARGET: JEE- Advanced 2023

CAPS-4

Inverse Trigonometric Function & Solution of Triangle

SCQ (Single Correct Type):

1.	The value	∩f
	THE VAIUE	υı

 $\sin^{-1}(\cos 2) - \cos^{-1}(\sin 2) + \tan^{-1}(\cot 4) - \cot^{-1}(\tan 4) + \sec^{-1}(\csc 6) - \csc^{-1}(\sec 6)$ is

- (A) 0
- (B) 3π
- (C) $8 3\pi$
- (D) $5\pi 16$

Let $\alpha = \cot^{-1}\left(\frac{\pi}{3}\right)$, $\beta = \sin^{-1}\left(\frac{\pi}{4}\right)$ and $\gamma = \sec^{-1}\left(\frac{2\pi}{3}\right)$, then the correct order sequence is 2.

- (A) $\alpha < \gamma < \beta$
- (B) $\beta < \alpha < \gamma$ (C) $\gamma < \beta < \alpha$ (D) $\alpha < \beta < \gamma$

Let $f(x) = \frac{2}{\pi} \left(\sin^{-1}[x] + \tan^{-1}[x] + \cot^{-1}[x] \right)$ where [x] denotes greatest integer less than or 3. equal to x. If A and B denote the domain and range of f(x) respectively, then the number of integers in $(A \cup B)$, is

- (A) 1
- (B) 2
- (C)3
- (D) 4

The radii of the escribed circles of $\,\Delta {\rm ABC}$ are $\,{\rm r_a}$, ${\rm r_b}\,$ and ${\rm r_c}$ respectively. 4.

If $r_a + r_b = 3R$ and $r_b + r_c = 2R$, then the smallest angle of the triangle is

- (A) $\tan^{-1}(\sqrt{2}-1)$ (B) $\frac{1}{2} \tan^{-1}(\sqrt{3})$ (C) $\frac{1}{2} \tan^{-1}(\sqrt{2}+1)$ (D) $\tan^{-1}(2-\sqrt{3})$

If $\cos^{-1}\frac{x}{a} - \sin^{-1}\frac{y}{b} = \theta$ (a, b \neq 0), then the maximum value of $b^2x^2 + a^2y^2 + 2ab$ xy $\sin\theta$ 5. equals

- (A) ab
- (B) $(a + b)^2$
- (C) $2(a + b)^2$
- (D) a^2b^2

In \triangle ABC, the bisector of the angle A meets the side BC at D and the circumscribed circle at E, 6. then DE equals

- (A) $\frac{a^2 \sec \frac{A}{2}}{2(b+c)}$ (B) $\frac{a^2 \sin \frac{A}{2}}{2(b+c)}$ (C) $\frac{a^2 \cos \frac{A}{2}}{2(b+c)}$ (D) $\frac{a^2 \csc \frac{A}{2}}{2(b+c)}$

7. If $\left[\cos^{-1}x\right] + \left[\cot^{-1}x\right] = 0$, where [.] denotes the greatest integer function, then the complete set of values of x is

 $(A) (\cos 1, 1]$

(B) (cos 1, cot 1)

(C) (cot 1, 1]

(D) [0, cot 1)

8. $f: R \rightarrow (0, \pi/2]$ and $f(x) = \cot^{-1}(x^2 - 2ax + a + 1)$ is sujective than $a \in$

(A) $\left\{\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right\}$

(B) $\left\{ \frac{1-\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2} \right\}$

(C) $\left(-\infty, \frac{1-\sqrt{5}}{2}\right) \cup \left(\frac{1+\sqrt{5}}{2}, \infty\right)$

(D) None of these

9. In a $\triangle ABC$, if $b^2 + c^2 = 1999a^2$, then $\frac{\cot B + \cot C}{\cot A}$ is equal to____.

(A) $\frac{1}{999}$

(B) $\frac{1}{1999}$

(C) 999

(D) 1999

10. If $2a \cos B = c$ in a $\triangle ABC$ with sides a, b, c then $\tan \frac{A}{2} \left(\tan \frac{A}{2} + 2 \tan \frac{C}{2} \right)$ is equal to_____.

(A) 1

(B) 21

(C) $\frac{1}{2}$

(D) $\frac{1}{3}$

11. In $\triangle ABC$, if BC = 1, $\sin \frac{A}{2} = x_1$, $\sin \frac{B}{2} = x_2$, $\cos \frac{A}{2} = x_3$, and $\cos \frac{B}{2} = x_4$ with

 $\left(\frac{x_1}{x_2}\right)^{2010} - \left(\frac{x_3}{x_4}\right)^{2009} = 0$, then length of AC is equal to_____.

(A) > 1

(B) < 1

(C) $\frac{1}{2}$

(D) 1

MCQ (One or more than one correct):

12. Let $f: R \to R$ defined by $f(x) = \cos^{-1}(-\{-x\})$

where {x} is fractional part function. Then which of the following is/are correct?

(A) f is many one but not even function.

(B) Range of f contains two prime numbers.

(C) f is aperiodic.

(D) Graph of f does not lie below x-axis.

13. Which of the following statement(s) is/are TRUE?

(A) Domain of $y = cos^{-1}(e^x)$ is same as range of $y = -\sqrt{-x}$.

- (B) Number of elements common in the range of function $y = tan^{-1}(sgn x)$ and $y = cot^{-1}(sgn x)$ is only 1 (where sgn x denotes signum function of x.)
- (C) The function $y = sgn(cot^{-1}x)$ and y = 1 are identical functions.
- (D) Number of integers in the solution set of $1 < log_2(tan^{-1}x) < 2$ is 4.

14. Let a function $f: A \to B$ be defined as $f(x) = \sin^{-1}(\tan x) - \csc^{-1}(\cot x)$.

Which of the following statement(s) is/are **TRUE** for the function f (x)?

- (A) f (x) is periodic with fundamental period π .
- (B) The function f (x) is non-invertible.
- (C) The composite function f(f(x)) is not defined.
- (D) The function f (x) is an even function.
- 15. Which of the following expression(s) have their value equal to four times the area of the triangle ABC? (All symbols used have their usual meaning in a triangle)

(A)
$$rs + r_1(s - a) + r_2(s - b) + r_3(s - c)$$

(B)
$$\frac{(a+b+c)^2}{\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{C}{2}}$$

(C)
$$(a^2 + b^2 - c^2)$$
 tan B

(D)
$$b^2 \sin 2C + c^2 \sin 2B$$

Following the usual notations, in a triangle ABC, if $(\sqrt{3}-1)$ a = 2b and A = 3B, then C cannot 16. be equal to_____.

(A)
$$\frac{\pi}{3}$$

(B)
$$\frac{\pi}{4}$$

(A)
$$\frac{\pi}{3}$$
 (B) $\frac{\pi}{4}$ (C) $\frac{2\pi}{3}$

(D)
$$\frac{\pi}{6}$$

- Let ABC be a triangle with ∠BAC =120° and AB.AC = 1. Also, let AD be the length of the 17. angle bisector of angle A of the triangle. Then _____.

 - (A) Minimum value of AD is $\frac{1}{2}$ (B) Maximum value of AD is $\frac{1}{2}$
 - (C) AD is minimum when \triangle ABC is isosceles (D) AD is maximum when \triangle ABC is isosceles

Comprehension Type Question:

Let α , β and γ are the roots of the equation $x^3 + 6x + 3 = 0$

and
$$A = \cos^{-1}\left(\sin\left((\alpha+\beta)^{-1} + (\beta+\gamma)^{-1} + (\gamma+\alpha)^{-1}\right)\right)$$

$$B = \cos\left(\tan^{-1}\left(\sin\left(\frac{\alpha+\beta+\gamma}{2}\right)\right)\right)$$

$$C = \sec^{-1} \left(\cos \operatorname{ec} \left((1 - \alpha)(1 - \beta)(1 - \gamma) \right) \right).$$

- If the range of the quadratic trinomial $g(x) = x^2 2Bx + k$ is $[0, \infty)$, then range of k equals 18.
 - (A) $[1, \infty)$
- (B) (1, ∞)
- (C) {1}
- (D) $(-\infty, 1]$

- **19.** The value of (5A + B C) is equal to
 - (A) 1
- (B) 10
- (C)5
- (D) 0
- **20.** Range of the function $f(x) = \frac{(5A C)x^5 + 6Bx^2}{x^4 + (B 1)x^3 + 1}$, is
 - (A) $[3, \infty)$
- (B)[0,3]
- (C) [-3, 3]
- (D) $(-\infty, \infty)$

Paragraph for question nos. 21 to 23

Let $f: A \to B$ be an onto function defined as $f(x) = \frac{\sin^{-1} x + \tan^{-1} x}{\cos^{-1} x + \cot^{-1} x}$.

- 21. If the minimum and maximum value of f (x) be m and M respectively then the value of $\frac{M}{m}$ is
 - (A) 1
- (B) 4
- (C) 7
- (D) Infinite
- 22. Let $g: B \to A$ be a function such that $g(f(x)) = x \ \forall \ x \in A$ and $f(g(x)) = x \ \forall \ x \in B$, then the value of g(3) is
 - (A) 1
- (B) 0
- (C) 0.5
- (D) 1
- 23. The number of solutions of the equation $f(x^3 + 14x^2 + 13x 5) = f(1 x^2 + x^3)$ is
 - (A) 0
- (B) 1
- (C) 2
- (D) 3

Numerical based Questions:

- $\textbf{24.} \qquad \text{If} \quad \sum_{r=1}^{10} tan^{-1} \left(\frac{3}{9r^2 + 3r 1} \right) = \cot^{-1} \left(\frac{m}{n} \right) \text{ (where m and n are coprime), then find (2m + n).}$
- 25. Perpendiculars are drawn from the angles A, B, C of an acute-angled triangle on opposite sides and produced to meet the circumscribing circle. If these produced parts are α , β , γ respectively, then the value of $\frac{(a/\alpha)+(b/\beta)+(c/\gamma)}{\tan A + \tan B + \tan C}$ is _____.

Matrix Match Type:

26. An function is defined on R or subset of R. Match the function given in column-I with their properties given in column-II. (Where [x] denotes the greatest integer less than or equal to x.)

Column-I

Column-II

- (A) $sec^{-1}x$
- (B) $\sqrt{|x|}$
- (C) $\cos^{-1}(\cos x)$

- (P) aperiodic
- (Q) into
- (R) odd or even
- (S) neither odd nor even

27. Match the following :

Column-I		Column-II	
Α	The number of solutions to the equation	р	4
	$\left \frac{\pi}{2} \left(\left \sin^{-1} \left(\sin x \right) \right \right) = \left x^2 - \pi x \right \text{ are }$		
В	The least value of the expression	q	2
	$2\log_{10} x - \log_x 0.01$ for x > 1 is		
С	The number of common terms in the	r	5
	series 1, 4, 7, 10, 1391 and 4, 8, 16,		
	32 1024 are		
D	Let A be a real number, and let	S	3
	$A = \frac{\sqrt{ x -2} + \sqrt{2- x }}{ 2-x }$ then the unit digit		
	of [A] ²⁰¹³ is (where [.] denote greatest		
	integer function)		
		t	0

Code:

- (A) A-p; B-r; C-q; D-s
- (B) A-r; B-p; C-s; D-t
- (C) A-s; B-q; C-p; D-r
- (D) A-r; B-p; C-q; D-r

28. Match the folloiwng:

Column-I		Column-II		
Α	If p2 – 2 p cos x = 673 and tan $\frac{x}{2}$ = 7,	р	8	
	the integral value of p is			
В	If $\sin \theta + \cos \theta = m$ then the maximum	q	9	
	value of m ² is			
С	r ₁ , r ₂ , r ₃ are the radii of the circle drawn	r	2	
	on the altitudes PD, PE and PF of			
	ΔPBC , ΔPCA , ΔPAB respectively as			
	diameter where P is the circumcentre of			
	the acute angled $\Delta ABC.$ The minimum			
	value of $\frac{1}{18} \left[\frac{a^2}{r_1^2} + \frac{b^2}{r_2^2} + \frac{c^2}{r_3^2} \right]$ is			
	(a, b, c are sides of $\triangle ABC$)			
D	In $\triangle ABC$, $a = 6$, $b = 3$ and	S	25	
	$cos(A-B) = \frac{4}{5}$ then the area of the			
	ΔABC is			

Code:

(A)
$$A \rightarrow$$
 (s); $B \rightarrow$ (r); $C \rightarrow$ (p); $D \rightarrow$ (q)

(B) A
$$\rightarrow$$
 (s); B \rightarrow (p); C \rightarrow (p); D \rightarrow (q)

(C) A
$$\rightarrow$$
 (r); B \rightarrow (r); C \rightarrow (p); D \rightarrow (q)

(D)
$$A \rightarrow$$
 (s); $B \rightarrow$ (q); $C \rightarrow$ (p); $D \rightarrow$ (r)