MATHEMATICS

TARGET: JEE- Advanced 2023

CAPS-25

Conic Sections

SCQ (Single Correct Type):

1. If α , β are eccentric angles of the extremities of a focal chord of an ellipse, then eccentricity of the ellipse is

(A) $\frac{\cos \alpha + \cos \beta}{\cos (\alpha + \beta)}$ (B) $\frac{\sin \alpha - \sin \beta}{\sin (\alpha - \beta)}$ (C) $\sec \alpha + \sec \beta$ (D) $\frac{\sin \alpha + \sin \beta}{\sin (\alpha + \beta)}$

A series of concentric ellipses E_1 , E_2 ,, E_n are drawn such that E_n touches the extremities of 2. the major axis of E_{n-1} and the foci of E_n coincide with the extremities of minor axis of E_{n-1} . If the eccentricity of the ellipses is independent of n, then the value of the eccentricity, is

(A) $\frac{\sqrt{5}}{2}$

(B) $\frac{\sqrt{5}-1}{2}$ (C) $\frac{\sqrt{5}+1}{2}$ (D) $\frac{1}{\sqrt{5}}$

The transverse axis of a hyperbola is of length 2a and a vertex divides the segment of the axis 3. between the centre and the corresponding focus in the ratio 2:1, the equation of the hyperbola is:

(A) $4x^2 - 5y^2 = 4a^2$

(B) $4x^2 - 5y^2 = 5a^2$ (C) $5x^2 - 4y^2 = 4a^2$ (D) $5x^2 - 4y^2 = 5a^2$

If AB is a double ordinate of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ such that $\triangle OAB$ (O is the origin) is an 4. equilateral triangle, then the eccentricity 'e' of the hyperbola satisfies

(A) e > $\sqrt{3}$

(B) $1 < e < 2\frac{2}{\sqrt{3}}$ (C) $e = \frac{2}{\sqrt{3}}$ (D) $e > \frac{2}{\sqrt{3}}$

5. An ellipse whose major axis is parallel to X -axis such that the segments of the focal chords are 1 and 3 units. The lines ax + by + c = 0 are the chords of the ellipse such that a,b,c are in A.P. and bisected by the point at which they intersect. The equation of its auxiliary circle is x² $+y^2 + 2\alpha x + 2\beta y - 2\alpha - 1 = 0$ then .

Equation of the auxiliary circle is

(A) $x^2 + y^2 - 2x + 4y + 1 = 0$

(B) $x^2 + y^2 + 2x + 2y - 3 = 0$

(C) $x^2 + y^2 + 2x + 4y + 1 = 0$

(D) $x^2 + v^2 - 4x + 2v - 3 = 0$

MCQ (One or more than one correct):

A point moves such that the sum of the squares of its distances from the two sides of length 6. 'a' of a rectangle is twice the sum of the squares of its distances from the other two sides of length 'b'. The locus of the point can be:

(A) a circle

(B) an ellipse

(C) a hyperbola

(D) a pair of lines

7. Which of the following equations in parametric form can represent a hyperbolic profile, where 't' is a parameter.

(A)
$$x = \frac{a}{2} \left(t + \frac{1}{t} \right) & y = \frac{b}{2} \left(t - \frac{1}{t} \right)$$

(A)
$$x = \frac{a}{2} \left(t + \frac{1}{t} \right) & y = \frac{b}{2} \left(t - \frac{1}{t} \right)$$
 (B) $\frac{tx}{a} - \frac{y}{b} + t = 0 & \frac{x}{a} + \frac{ty}{b} - 1 = 0$

(C)
$$x = e^t + e^{-t} & y = e^t - e^{-t}$$

(D)
$$x^2 - 6 = 2 \cos t \& y^2 + 2 = 4 \cos^2 \frac{t}{2}$$

- Let C_1 : $9x^2 16y^2 18x + 32y 23 = 0$ and C_2 : $25x^2 + 9y^2 50x 18y + 33 = 0$ are two 8. conics then
 - (A) eccentricity of C_1 is $\frac{5}{4}$.
- (B) eccentricity of C_2 is $\frac{5}{3}$.
- (C) area of the quadrilateral with vertices at the foci of the conics is $\frac{8}{9}$.
- (D) latus rectum of C_1 is greater than latus rectum of C_2 .
- 9. A hyperbola centred at C has one focus at P(6, 8). If its directrices are 3x + 4y + 10 = 0 and 3x + 4y + 10 = 0+ 4y - 10 = 0, then _____.

(A)
$$CP = 10$$

(B) eccentricity =
$$\sqrt{5}$$

(C)
$$CP = 8$$

(D) eccentricity =
$$\frac{\sqrt{5}}{2}$$

- Two ellipses $\frac{x^2}{\cos^2 \alpha} + \frac{y^2}{\sin^2 \alpha} = 1$ and $\frac{x^2}{\sin^2 \alpha} + \frac{y^2}{\cos^2 \alpha} = 1 \left(0 < \alpha < \frac{\pi}{4} \right)$ intersect at four points 10.
 - P,Q, R, S then which of the following statement(s) is /are true?
 - (A) PQRS is a square with length of the side $\sin 2\alpha$
 - (B) PQRS lie on a circle whose centre is origin and with radius $\frac{\sin 2\alpha}{\sqrt{2}}$
 - (C) eccentricity of the two given ellipses are same
 - (D) there are two points on $\frac{x^2}{\sin^2 x} + \frac{y^2}{\cos^2 x} = 1$ whose reflection in y = x lie on the same ellipse

Comprehension Type Question:

Comprehension # 1

Paragraph for question nos. 11 to 13

The graph of the conic $x^2 - (y - 1)^2 = 1$ has one tangent line with positive slope that passes through the origin. the point of tangency being (a, b). Then

- The value of $\sin^{-1}\left(\frac{a}{b}\right)$ is 11.
 - (A) $\frac{5\pi}{12}$
- (B) $\frac{\pi}{6}$
- (C) $\frac{\pi}{3}$
- (D) $\frac{\pi}{4}$

- 12. Length of the latus rectum of the conic is (A) 1 (B) $\sqrt{2}$ (C) 2 (D) none
- **13.** Eccentricity of the conic is
 - (A) $\frac{4}{3}$ (B) $\sqrt{3}$ (C) 2 (D) none

Numerical based Questions:

- 14. Common tangents are drawn to the parabola $y^2 = 4x$ & the ellipse $3x^2 + 8y^2 = 48$ touching the parabola at A & B and the ellipse at C & D, then the area of the quadrilateral ABCD is $\lambda \sqrt{2}$ the λ is equal to
- 15. If two points P & Q on the hyperbola $x^2/a^2 y^2/b^2 = 1$ whose centre is C be such that CP is perpendicular to CQ & a < b, then $\frac{1}{CP^2} + \frac{1}{CQ^2} = \lambda \left(\frac{1}{a^2} \frac{1}{b^2} \right)$ where λ is :
- **16.** If the distance between the centres of the hyperbolas :

$$x^2 - 16xy - 11y^2 - 12x + 6y + 21 = 0$$
 (i)

$$9x^2 - 16y^2 - 18x - 32y - 151 = 0$$
 (ii)

is d then $125 d^2 = \dots$

- 17. If $(a^2, a 2)$ be a point interior to the region of the parabola $y^2 = 2x$ bounded by the chord joining the points (2, 2) and (8, -4), then the number of all possible integral values of a is:
- 18. If a tangent of slope 2 of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is normal to the circle $x^2 + y^2 + 4x + 1 = 0$, then maximum value of ab is _____.
- 19. If the length of the latus rectum of a standard hyperbola of eccentricity 2 is equal to the limit of the series $\frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{7}{1^2 + 2^2 + 3^2} + \dots$ and r is the radius of the director circle of its conjugate hyperbola, then $r^2 = \underline{\hspace{1cm}}$.
- 20. Let $C_1: x^2 y^2 = 5$ and $C_2: x^2 + y^2 8y + 3 = 0$ be the equations of a hyperbola and a circle respectively. The curves C_1 and C_2 touch each other at $(\pm 3, 2)$. $P(0, 4 \sqrt{13})$ is a point on the curve C_2 . Let a line through P meet C_1 at m number of points and C_2 at n number of points. If (m+n) = 3, then the number of such straight lines is _____.
- 21. Coordinates of the vertices B and C are (2, 0) and (8, 0) respectively. The vertex A is varying in such a way that $4\tan\frac{B}{2}\tan\frac{C}{2} = 1$. If the locus of A is an ellipse then the length of its semi major axis is _____.

Matrix Match Type:

22. Match the following:

For the ellipse
$$3x-6^2 + 3y-9^2 = \frac{4}{169} 5x+12y+6^2$$

Column-I	Column-II
(a) Length major axis	(p) $\frac{24}{5}$
(b) Length minor axi	(q) $\frac{16}{5}$
(c) Length of Latus Rectum	(r) $\frac{16}{3}$
(d) Distance between directrices	(s) $\frac{72}{5}$
	(t) $\frac{48}{5}$

(A)
$$a \rightarrow r$$
; $b \rightarrow q$; $c \rightarrow r$; $d \rightarrow s$

(B)
$$a \rightarrow t$$
; $b \rightarrow q$; $c \rightarrow r$; $d \rightarrow s$

(C)
$$a \rightarrow t$$
; $b \rightarrow s$; $c \rightarrow r$; $d \rightarrow s$

(D)
$$a \rightarrow t$$
; $b \rightarrow q$; $c \rightarrow q$; $d \rightarrow s$

Subjective Type Questions:

- 23. If S and H be the focii of an ellipse and any point A be taken on the curve and the chords ASB, BHC, CSD and DHE be drawn and eccentric angles of A, B, C, D, E, be θ_1 , θ_2 , q_3 , q_4 , Prove that $\tan\frac{\theta_1}{2}\tan\frac{\theta_2}{2}=\cot\frac{\theta_2}{2}\cot\frac{\theta_3}{2}=\tan\frac{\theta_3}{2}\tan\frac{\theta_4}{2}=...$
- 24. A variable point P on an ellipse of eccentricity e is joined to joined to its foci S, S'. Prove that the locus of the incentre of Δ PSS' is an ellipse of eccentricity $\sqrt{\frac{2e}{1+e}}$.
- 25. Let P and Q be two points on the ellipse $x^2 + 4y^2 = 16$ whose eccentric angles are $\frac{\pi}{4}$ and $\frac{3\pi}{4}$ respectively. The tangent at P and the normal at Q cut each other at R and the normal at Q cuts the ellipse again at M. Find the area of the triangle PRM.
- 26. A rectangular hyperbola, with centre C, is intersected by a circle of radius r in four points p, Q, R and S. Prove that $CP^2 + CQ^2 + CR^2 + CS^2 = 4r^2$