MATHEMATICS

TARGET: JEE- Advanced 2023

CAPS-23 CIRCLE

SCQ (Single Correct Type):

1.	Three concentric circles of which the biggest is $x^2 + y^2 = 1$, have their radii in A.P. If the line y
	= x + 1 cuts all the circles in real and distinct points. The interval in which the common
	difference of the A.P. will lie is :

(A) $\left(0, \frac{1}{4}\right)$ (B) $\left(0, \frac{1}{2\sqrt{2}}\right)$ (C) $\left(0, \frac{2-\sqrt{2}}{4}\right)$ (D) none of these

2. A circle of constant radius 'r' passes through origin O and cuts the axes of coordinates in points P and Q, then the equation of the locus of the foot of perpendicular from O to PQ is:

(A)
$$(x^2 + y^2) (x^{-2} + y^{-2}) = 4r^2$$

(B)
$$(x^2 + y^2)^2 (x^{-2} + y^{-2}) = r^2$$

(C)
$$(x^2 + y^2)^2 (x^{-2} + y^{-2}) = 4r^2$$

(D)
$$(x^2 + y^2) (x^{-2} + y^{-2}) = r^2$$

3. A pair of tangents are drawn from a point P to the circle $x^2 + y^2 = 1$. If the tangents make an intercept of 2 units on the line x = 1, then the locus of P is _____.

- (A) a straight line
- (B) a pair of lines
- (C) a parabola
- (D) a hyperbola

4. A circle with centre at the origin and radius equal to a meets the X axis at the points A(-a, 0) and B(a, 0) . P(α) and Q(β) are two points on this circle so that $\alpha - \beta = 2\gamma$, where γ is a constant. The locus of the point of intersection of AP and BQ is _____.

(A)
$$x^2 - y^2 - 2ay \tan \gamma = a^2$$

(B)
$$x^2 + y^2 - 2ay \tan \gamma = a^2$$

(C)
$$x^2 + y^2 + 2ay \tan \gamma = a^2$$

(D)
$$x^2 - y^2 + 2ay \tan \gamma = a^2$$

Let the lines $y - 2 = m_1 (x - 5)$ and $(y + 4) = m_2 (x - 3)$ intersect at right angles at a point P, where m_1 and m_2 are parameters. If the locus of P is $x^2 + y^2 + gx + fy + 7 = 0$, then the value of (f - g) equals _____.

- (A) 1
- (B) 2
- (C) 8
- (D) 10

6. The circle, which passes through the points of intersection of the circles $x^2 + y^2 - 4x - 6y + 12$ = 0 and $x^2 + y^2 - 8x + 12y + 50 = 0$, and also passes through the origin, is_____.

- (A) $19x^2 + 19y^2 52x 222y = 0$
- (B) $19(x^2 + y^2) 2(34x + 111y) = 0$
- (C) $19(x^2 + y^2) 117x + 26y = 0$
- (D) such circle does not exist

7. Let $P(\alpha, \beta)$ be a point in the first quadrant. Circles are drawn through P touching the coordinate axes.

The relation between α and β , for which two circles are orthogonal, is _____.

(A)
$$\alpha^2 + \beta^2 = 4\alpha\beta$$

(B)
$$\alpha + \beta^2 = 4\alpha\beta$$

(C)
$$\alpha^2 + \beta^2 = \alpha\beta$$

(D)
$$\alpha^2 + \beta^2 = 2\alpha\beta$$

- The equation of circum-circle of a $\triangle ABC$ is $x^2 + y^2 + 3x + y 6 = 0$. If A = (1,-2), B = (-3,2)8. and the vertex C varies then the locus of ortho-centre of $\triangle ABC$ is a
 - (A) Straight line
- (B) Circle
- (C) Parabola
- (D) Ellipse
- Let AB be any chord of the circle $x^2 + y^2 4x 4y + 4 = 0$ which subtends an angle of 90° at 9. the point (2,3) then the locus of the midpoint of AB is a circle whose centre is
 - (A) (1.5)
- (B) $\left(1, \frac{3}{2}\right)$ (C) $\left(1, \frac{5}{2}\right)$
- (D) $\left(2,\frac{5}{2}\right)$
- P and Q are two points on a line passing through (2, 4) and having slope m. If a line segment 10. AB subtends a right angle at P and Q where A = (0, 0) and B = (6, 0), then range of m is
 - (A) $\left(\frac{2-3\sqrt{2}}{4}, \frac{2+3\sqrt{2}}{4}\right)$

(B) $\left(-\infty, \frac{2-3\sqrt{2}}{4}\right) \cup \left(\frac{2+3\sqrt{2}}{4}, \infty\right)$

(C)(-4, 4)

(D) $-\infty$, $-4 \cup 4$, ∞

MCQ (One or more than one correct):

- If $a\ell^2 bm^2 + 2 d\ell + 1 = 0$, where a, b, d are fixed real numbers such that $a + b = d^2$, then the 11. line $\ell x + my + 1 = 0$ touches a fixed circle :
 - (A) which cuts the x-axis orthogonally
 - (B) with radius equal to b
 - (C) on which the length of the tangent from the origin is $\sqrt{d^2 b}$
 - (D) none of these.
- 12. Let A, B, C, D lie on a line such that AB = BC = CD = 1. The points A and C are also joined by a semicircle with AC as diameter and P is a variable point on this semicircle such that $\angle PBD=\theta$, $0 \le \theta \le \pi$. Let R is the region bounded by are AP, the straight line PD and line AD.
 - (A) The maximum possible area of region R is $\frac{2\pi + 3\sqrt{3}}{2}$
 - (B) If 'L' is the perimeter of region 'R', then L is equal to $3+\pi -\theta + \sqrt{5-4\cos\theta}$
 - (C) The maximum possible area of region R is $\frac{2\pi 3\sqrt{3}}{2}$
 - (D) If 'L' is the perimeter of region 'R', then L is equal to $3 + \pi \theta + \sqrt{5 + 4\cos\theta}$

Numerical based Questions:

- 13. The axes are translated so that the new equation of the circle $x^2 + y^2 - 5x + 2y - 5 = 0$ has no first degree terms and the new equation $x^2 + y^2 = \frac{\lambda}{4}$, then find the value of λ
- 14. A line meets the co-ordinate axes in A and B. A circle is circumscribed about the triangle OAB. If d₁ and d₂ are the distances of the tangent to the circle at the origin O from the points A and B respectively and diameter of the circle is $\lambda_1 d_1 + \lambda_2 d_2$, then find the value of $\lambda_1 + \lambda_2$.

- **15.** Find the number of integral points which lie on or inside the circle $x^2 + y^2 = 4$.
- 16. Find number of values of 'c' for which the set, $\{(x, y) \mid x^2 + y^2 + 2x \le 1\} \cap \{(x, y) \mid x y + c \ge 0\} \text{ contains only one point is common.}$
- 17. A rhombus is inscribed in the region common to the two circles $x^2 + y^2 4x 12 = 0$ and $x^2 + y^2 + 4x 12 = 0$ with two of its vertices on the line joining the centres of the circles and the area of the rhombus is $a\sqrt{3}$ sq. units, then find the value of a.
- 18. Let A be the centre of the circle $x^2 + y^2 2x 4y 20 = 0$. Suppose that the tangents at the points B (1, 7) & D (4, -2) on the circle meet at the point C. Find the area of the quadrilateral ABCD.
- 19. If a tangent of slope $\frac{1}{2}$ of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is normal to the circle $x^2 + y^2 + 4x + 2 = 0$, then the maximum value of ab is _____.

Subjective Type Questions:

- **20.** Find the equation of the circle passing through the points A(4, 3), B(2, 5) and touching the axis of y. Also find the point P on the y-axis such that the angle APB has largest magnitude.
- 21. Two circles, each of radius 5 units, touch each other at (1, 2). If the equation of their common tangent is 4x + 3y = 10. Find the equations of the circles.
- 22. The centre of the circle S = 0 lies on the line 2x 2y + 9 = 0 and S = 0 cuts orthogonally the circle $x^2 + y^2 = 4$. Show that circle S = 0 passes through two fixed points and also find their co-ordinates.
- 23. The lines 5x + 12y 10 = 0 and 5x 12y 40 = 0 touch a circle C_1 of diameter 6 unit. If the centre of C_1 lies in the first quadrant, find the equation of the circle C_2 which is concentric with C_1 and cuts of intercepts of length 8 on these lines.
- Prove that the two circles which pass through the points (0, a), (0, -a) and touch the straight line y = mx + c will cut orthogonaly if $c^2 = a^2(2 + m^2)$.
- 25. Show that if one of the circle $x^2 + y^2 + 2gx + c = 0$ and $x^2 + y^2 + 2g_1x + c = 0$ lies within the other, then gg_1 and c are both positive.