MATHEMATICS

TARGET: JEE- Advanced 2023

CAPS-22

Straight Line

SCQ (Single Correct Type):

1.	Let A(4, −1), B and C be the vertices of a triangle. Let the internal angular bisectors of angles
	B and C be $x - 1 = 0$ and $x - y - 1 = 0$ respectively. Let D, E and F be the points of contact of
	the sides BC, CA and AB respectively with the incircle of triangle ABC. The slope of BC is

1			
(A) $\frac{1}{2}$	(B) 2	(C) 3	(D) 12

2. Let A(4, -1), B and C be the vertices of a triangle. Let the internal angular bisectors of angles B and C be x - 1 = 0 and x - y - 1 = 0 respectively. Let D, E and F be the points of contact of the sides BC, CA and AB respectively with the incircle of triangle ABC. If D', E', F' are the images of D, E, F in the internal angular bisectors of angles A, B, C respectively, then the equation of the circumcircle of $\Delta D'E'F'$ is _____.

(A)
$$(x-1)^2 + y^2 = 5$$

(B) $x^2 + (y-1)^2 = 25$
(C) $(x-1)^2 + (y-1)^2 = 5$
(D) $x^2 + y^2 = 25$

3. ABC is a triangle right angled at A with vertices A,B,C in the anti-clockwise sense in that order. A= (1,2), B = (-3,1) and vertex C lies on the X – axis. BCEF is a square with vertices B,C,E,F in the clockwise sense in that order. ACD is an equilateral triangle with vertices A,C,D in the anti-clockwise sense in that order. The abscissa of centroid of \triangle BCE is

(A) -1 (B)
$$\frac{-1}{2}$$
 (C) $\frac{-1}{3}$ (D) $\frac{-2}{3}$

4. Statement 1: Consider the point A(0,1) and B(2,0) and 'P' be a point on the line 4x+3y+9=0, then coordinates of 'P' such that |PA- PB| is maximum is $\left(\frac{-12}{5}, \frac{17}{5}\right)$

Statement 2: |PA-PB| ≤ |AB|

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct Explanation for Statement-1
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True

5.	The vertices of a triangle are $(1,\sqrt{3})$, $(2c)$	os θ , $2\sin\theta$) and $\left(2\sin\theta$, $-2\cos\theta\right)$ where $\theta\in R$. The
	locus of orthocentre of the triangle is:	
	(A) $(x-1)^2 + (y-\sqrt{3})^2 = 4$	(B) $(x-2)^2 + (y-\sqrt{3})^2 = 4$
	(C) $(x-1)^2 + (y-\sqrt{3})^2 = 8$	(D) $(x-2)^2 + (y-\sqrt{3})^2 = 8$
•	The two est of real values of a gual that th	

6. The true set of real values of a such that the point M(a, sina) lies inside the triangle formed by the lines x - 2y + 2 = 0, x + y = 0 and $x - y - \pi = 0$, is

$$\text{(A) } \left(0,\pi\right) \qquad \text{(B) } \left(\frac{\pi}{3},\frac{\pi}{2}\right) \qquad \text{(C) } \left(0,\frac{\pi}{6}\right) \cup \left(\frac{\pi}{3},\frac{\pi}{2}\right) \qquad \text{(D) } \left(\frac{\pi}{2},\pi\right) \cup \left(\frac{2\pi}{3},2\pi\right) - \left(\frac{\pi}{3},\frac{\pi}{2}\right) \qquad \text{(D) } \left(\frac{\pi}{3},\frac{\pi}{2}\right) \qquad \text{(D) } \left(\frac{\pi}{3},\frac{\pi}{2}\right) = \frac{\pi}{3}, \quad \frac{\pi}{3} = \frac{\pi}{3}, \quad \frac{\pi}{3}$$

7. The equations 3x + 2y + 1 = 0, 2x + 4y - 1 = 0 and $3x^2 + 4xy + 4y^2 + 2x - 2y + 1 + \alpha = 0$ will have a unique solution if α equals

(A) $\frac{2}{3}$ (B) $\frac{4}{5}$ (C) $\frac{3}{8}$

8. If the points (-2, 0), $\left(-1, \frac{1}{\sqrt{3}}\right)$ and (cos θ , sin θ) are collinear, then the number of values of θ when $0 \le \theta \le \frac{\pi}{2}$.

MCQ (One or more than one correct):

9. Consider the three linear equations, ax + by + c = 0, bx + cy + a = 0, cx + ay + b = 0, where ax + bx + c = 0. Which of the following is (are) correct?

(A) If a + b + c = 0 and $a^2 + b^2 + c^2 = ab + bc + ca$, then the lines represent the entire XY plane.

(B) If a + b + c = 0 and $a^2 + b^2 + c^2 \neq ab + bc + ca$, then the lines are concurrent.

(C) If $a + b + c \neq 0$ and $a^2 + b^2 + c^2 = ab + bc + ca$, then the lines are coincident.

(D) If $a + b + c \neq 0$ and $a^2 + b^2 + c^2 \neq ab + bc + ca$, then the lines are neither coincident nor concurrent.

10. The triangle formed by the lines x + y = 0, 3x + y - 4 = 0 and x + 3y - 4 = 0 is

(A) isosceles

(B) scalene

(C) acute angled

(D) obtuse angled

11. Consider the straight lines $L_1: x + y = 2$, $L_2: 2 x - y + 3 = 0$ and a variable point $P(a,a^2)$ where $a \in R$. 'P' lies in the acute angle not containing the origin if 'a ' lies in the interval

(A) $\left(-4, -3\right)$ (B) $\left(\frac{3}{2}, \frac{5}{2}\right)$ (C) $\left(-2, \frac{-3}{2}\right)$ (D) (5, 7)

- Consider the equation $y y_1 = m(x x_1)$. If m and x_1 are fixed and different lines are drawn for 12. different values of y1, then:
 - (A) the lines will pass through a fixed point (B) there will be a set of parallel lines
 - (C) all the lines intersect the line $x = x_1$
- (D) all the lines will be parallel to the line $y = x_1$.
- If $a^2 + 9b^2 4c^2 = 6$ ab then the family of lines ax + by + c = 0 are concurrent at: 13.
 - (A) (1/2, 3/2)
- (B) (-1/2, -3/2)
- (C) (-1/2, 3/2) (D) (1/2, -3/2)

Comprehension Type Question:

Comprehension #1

Paragraph for question nos. 14 to 16

Let ABCD is a square with sides of unit length. Points E and F are taken on sides AB and AD respectively so that AE = AF. Let P be a point inside the square ABCD.

- 14. The maximum possible area of quadrilateral CDFE is
 - $(A)\frac{1}{9}$
- (B) $\frac{1}{4}$ (C) $\frac{5}{8}$ (D) $\frac{3}{8}$

- The value of $(PA)^2 (PB)^2 + (PC)^2 (PD)^2$ is equal to 15.

- (D) 0
- 16. Let a line passing through point A divides the square ABCD into two parts so that area of one portion is double the other, then the length of portion of line inside the square is
 - (A) $\frac{\sqrt{10}}{3}$
- (B) $\frac{\sqrt{13}}{3}$ (C) $\frac{\sqrt{11}}{3}$
- (D) $\frac{2}{\sqrt{3}}$

Numerical based Questions:

- The equation $9x^3 + 9x^2y 45x^2 = 4y^3 + 4xy^2 20y^2$ represents 3 straight lines, two of which 17. pass through the origin. Find the area of the triangle formed by these lines (in sq. units).
- If the points $\left(\frac{a^3}{a-1},\frac{a^2-3}{a-1}\right)$, $\left(\frac{b^3}{b-1},\frac{b^2-3}{b-1}\right)$ and $\left(\frac{c^3}{c-1},\frac{c^2-3}{c-1}\right)$ are collinear for three distinct 18. values a, b, c and a \neq 1, b \neq 1 and c \neq 1, then find the value of abc- (ab + bc + ac) + 3 (a + b + c).
- 19. If the straight lines joining the origin and the points of intersection of the curve $5x^2 + 12xy - 6y^2 + 4x - 2y + 3 = 0$ and x + ky - 1 = 0 are equally inclined to the x-axis, then find the value of | k |.
- Is there a real value of λ for which the image of the point $(\lambda, \lambda 1)$ by the line mirror 3x + y =20. 6 λ is the point ($\lambda^2 + 1$, λ) ? If so find λ .

Matrix Match Type:

21. Let ABC be a triangle such that the coordinates of A are (-3, 1). Equation of the median through B is 2x + y - 3 = 0 and equation of the angular bisector of C is 7x - 4y - 1 = 0. Then match the entries of column-I with their corresponding correct entries of column-II.

Column-I	Column-II
----------	-----------

- (A) Equation of the line AB is (P) 2x + y 3 = 0
- (B) Equation of the line BC is (Q) 2x 3y + 9 = 0
- (C) Equation of CA is (R) 4x + 7y + 5 = 0
 - (S) 18x y 49 = 0

SUBJECTIVE:

- **22.** Two vertices of a triangle are (4, -3) and (-2, 5). If the orthocentre of the triangle is at (1, 2), then find the third vertex.
- 23. A pair of perpendicular straight lines is drawn through the origin and forming with the line 2x + 3y = 6 an isosceles Δ right angled at the origin. Find the equation of the pair of straight lines and area of the Δ .
- 24. A straight line passing through O (0, 0) cuts the lines $x = \alpha$, $y = \beta$ and x + y = 8 at A, B and C respectively such that OA · OB · OC = $48\sqrt{2}$ and f (α , β) \leq 0

where f (x, y) =
$$\left| \frac{y}{x} - \frac{3}{2} \right| + (3x - 2y)^6 + \sqrt{ex + 2y - 2e - 6}$$
.

- (i) Find the point of intersection of lines $x = \alpha$ and $y = \beta$.
- (ii) Find the value of (OA + OB + OC).
- (iii) Find the equation of line OA.
- 25. The vertices of a triangle OBC are O(0,0) B(-3,-1) and C(-1,-3). Find the equation of line parallel to BC and intersecting the sides OB and OC, whose perpendicular distance from the point (0,0) is $\frac{1}{2}$.