MATHEMATICS

TARGET: JEE- Advanced 2023

CAPS-20 VECTOR

SCQ (Single Correct Type):

1.	The vector $\hat{\mathbf{i}} + x\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ is rotated through an angle of $\cos^{-1}\frac{11}{14}$ and doubled in magnitude, then it
	becomes $4\hat{i} + (4x-2)\hat{j} + 2\hat{k}$. The value of 'x' is:

(A) $-\frac{2}{3}$

(B) $\frac{2}{3}$

(C) $\frac{1}{2}$

(D) 2

If the acute angle that the vector, $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$ makes with the plane of the two vectors 2. $2\hat{i} + 3\hat{j} - \hat{k}$ and $\hat{i} - \hat{j} + 2\hat{k}$ is $\cot^{-1}\sqrt{2}$ then:

(A) α (β + γ) = $\beta \gamma$

(B) β ($\gamma + \alpha$) = $\gamma \alpha$

(C) $\gamma (\alpha + \beta) = \alpha \beta$

(D) $\alpha \beta + \beta \gamma + \gamma \alpha = 0$

If \bar{p} , \bar{q} , \bar{r} are three mutually perpendicular vectors of the same magnitude and if a vector \bar{x} 3. satisfies the equation $\bar{p} \times \left[\left(\bar{x} - \bar{q} \right) \times \bar{p} \right] + \bar{q} \times \left[\left(\bar{x} - \bar{r} \right) \times \bar{q} \right] + \bar{x} \times \left[\left(\bar{x} - \bar{p} \right) \times \bar{r} \right] = \bar{0}$, then vector \bar{x} is equal

(A) $\frac{1}{2}(\overline{p} + \overline{q} - 2\overline{r})$ (B) $\frac{1}{2}(\overline{p} + \overline{q} + \overline{r})$ (C) $\frac{1}{2}(\overline{p} + \overline{q} + \overline{r})$ (D) $\frac{1}{3}(2\overline{p} + \overline{q} - \overline{r})$

Let \bar{a} and \bar{b} be two vectors of equal magnitude of 5 units each. Let p and \bar{p} be \bar{q} be vectors 4. such that $\overline{p} = \overline{a} + \overline{b}$ and $\overline{q} = \overline{a} - \overline{b}$. If $|\overline{p} \times \overline{q}| = 2 \left\{ \lambda - \left(\overline{a} - \overline{b} \right)^2 \right\}^{\frac{1}{2}}$, then value of λ is _____.

(A) 25

(B) 125

(C) 625

(D) None of these

 $|\bar{a}| = |\bar{b}| = |\bar{c}| = |\bar{a} + \bar{b}| = 1$, $\bar{a} \cdot \bar{c} = 0$ and $\bar{a} = \frac{\ddot{i}}{\sqrt{2}} + \frac{\ddot{j}}{\sqrt{2}}$, where \bar{a} , \hat{k} and \bar{b} are linearly dependent 5. vectors. If for some \vec{c} , $|\vec{b} \times \vec{c}| = |\vec{a} \times \vec{c}|$ and $\vec{c} = p\hat{i} + q\hat{j} + r\hat{k}$, then $16(p^4 + q^4 + r^4)$ is _____.

(A) 8

(B) 21

(C) $\frac{21}{3}$

(D) 4

such that $|\overline{a} + \overline{b} + \overline{c}| = \sqrt{3}$. be three unit vectors 6. and \bar{c} $(\overline{a} \times \overline{b}) \cdot (\overline{b} \times \overline{c}) + (\overline{b} \times \overline{c}) \cdot (\overline{c} \times \overline{a}) + (\overline{c} \times \overline{a}) \cdot (\overline{a} \times \overline{b}) = \lambda$, then the maximum value of λ is

(A) 0

(B) 1

(C) $\sqrt{3}$

(D) 2

7. Let \bar{r} be the position vector of a variable point in the Cartesian OXY plane such that $\overline{r} \cdot \left(10\hat{j} - 8\hat{i} - \overline{r}\right) = 40 \text{ and } P_1 = \max\left\{\left|\overline{r} + 2\hat{i} - 3\hat{j}\right|^2\right\}, \ P_2 = \min\left\{\left|\overline{r} + 2\hat{i} - 3\hat{j}\right|^2\right\}. \ P_1^2 \text{ is equal to } \underline{\hspace{1cm}}.$ (B) $2\sqrt{2}-1$ (C) $6\sqrt{2} + 1$ (D) $9 - 4\sqrt{2}$ (A) 9Let \bar{r} be the position vector of a variable point in the Cartesian OXY plane such that 8. $\overline{r}\cdot\left(10\hat{j}-8\hat{i}-\overline{r}\right)=40 \text{ and } P_1=\max\left\{\left|\overline{r}+2\hat{i}-3\hat{j}\right|^2\right\}, \ P_2=\min\left\{\left|\overline{r}+2\hat{i}-3\hat{j}\right|^2\right\}. \ P_1+P_2 \text{ is equal to }\underline{\hspace{1cm}}.$ (A) 2(B) 10 (C) 18 (D) 5

Given $|\vec{a}| = |\vec{b}| = 1$ and $|\vec{a} + \vec{b}| = \sqrt{3}$. If \vec{c} -is a vector such that $\vec{c} - \vec{a} - 2\vec{b} = 3(\vec{a} \times \vec{b})$, then $(\vec{c} \cdot \vec{b})$ is 9. equal to

(A) $-\frac{1}{2}$

(B) $\frac{1}{2}$

(C) $\frac{3}{2}$

(D) $\frac{5}{2}$

MCQ (One or more than one correct):

If $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$, $\vec{b} = y\hat{i} + z\hat{j} + x\hat{k}$ and $\vec{c} = z\hat{i} + x\hat{j} + y\hat{k}$, then $\vec{a} \times (\vec{b} \times \vec{c})$ is 10.

(A) parallel to $(y-z) \hat{i} + (z-x) \hat{j} + (x-y) \hat{k}$ (B) orthogonal to $\hat{i} + \hat{j} + \hat{k}$

(C) orthogonal to $(y + z) \hat{i} + (z + x) \hat{j} + (x + y) \hat{k}$ (D) orthogonal to $x \hat{i} + y \hat{j} + z \hat{k}$

The value(s) of $\alpha \in [0, 2\pi]$ for which vector $\vec{a} = \hat{i} + 3\hat{j} + (\sin 2\alpha)\hat{k}$ makes an obtuse angle with the 11. z-axis and the vectors $\vec{b} = (\tan \alpha)\hat{i} - \hat{j} + 2\sqrt{\sin \frac{\alpha}{2}}\hat{k}$ and $\vec{c} = (\tan \alpha)\hat{i} + (\tan \alpha)\hat{j} - 3\sqrt{\csc \frac{\alpha}{2}}\hat{k}$ are orthogonal, is/are:

(A) tan -1 3

(B) $\pi - \tan^{-1} 2$

(C) π + tan⁻¹ 3

(D) $2\pi - \tan^{-1} 2$

Let \bar{a} and \bar{c} be unit vectors such that $\bar{a} \times \bar{b} = 2\bar{a} \times \bar{c}$, where $|\bar{b}| = 4$. The angle between \bar{a} and 12. \overline{c} is $\cos^{-1}\left(\frac{1}{4}\right)$. If $\overline{b} - 2\overline{c} = k\overline{a}$, then k is equal to _____.

(A) $\frac{1}{2}$

(B) $\frac{1}{4}$

(C) -4

(D) 3

If $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) \cdot (\vec{a} \times \vec{d}) = 0$, then which of the following may be true? 13.

(A) \vec{a} , \vec{b} , \vec{c} and \vec{d} are necessarily coplanar (B) \vec{a} lies in the plane of \vec{c} and \vec{d}

(C) \vec{b} lies in the plane of \vec{c} and \vec{d}

(D) \vec{c} lies in the plane of \vec{a} and \vec{d}

Numerical based Questions:

If \vec{d} is a unit vector and $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors, then the value of 14. $\left| \frac{\left| \overline{(\overline{a} \cdot \overline{d})} \overline{(\overline{b} \times \overline{c})} + \overline{(\overline{b} \cdot \overline{d})} \overline{(\overline{c} \times \overline{a})} + \overline{(\overline{c} \cdot \overline{d})} \overline{(\overline{a} \times \overline{b})} \right|}{\overline{(\overline{a} \ \overline{b} \ \overline{c})}} \right| \text{ is equal to } \underline{\hspace{1cm}}.$

 $\text{Let } \left(\hat{p}\times\overline{q}\right)\times\hat{p} + \left(\hat{p}\cdot\overline{q}\right)\overline{q} = \left(x^2+y^2\right)\overline{q} + (14-4x-6y)\hat{p} \text{ , where } \hat{p} \text{ and } \overline{q} \text{ are two non-collinear } \left(x^2+y^2\right)\overline{q} + (14-4x-6y)\hat{p} \text{ , where } \hat{p} \text{ and } \overline{q} \text{ are two non-collinear } \left(x^2+y^2\right)\overline{q} + (14-4x-6y)\hat{p} \text{ , where } \hat{p} \text{ and } \overline{q} \text{ are two non-collinear } \left(x^2+y^2\right)\overline{q} + (14-4x-6y)\hat{p} \text{ , where } \hat{p} \text{ and } \overline{q} \text{ are two non-collinear } \left(x^2+y^2\right)\overline{q} + (14-4x-6y)\hat{p} \text{ , where } \hat{p} \text{ and } \overline{q} \text{ are two non-collinear } \left(x^2+y^2\right)\overline{q} + (14-4x-6y)\hat{p} \text{ .}$ 15. vectors (and \hat{p} is a unit vector) and x, y are scalars. Find the value of (x+y).

- 16. Let $\bar{r} = (\bar{a} \times \bar{b}) \sin x + (\bar{b} \times \bar{c}) \cos y + (\bar{c} \times \bar{a})$, where \bar{a} , \bar{b} and \bar{c} are non-zero non-coplanar vectors. If \bar{r} is orthogonal to $3\bar{a} + 5\bar{b} + 2\bar{c}$, then the value of $\sec^2 y + \csc^2 x + \sec y \csc x$ is _____.
- 17. Given four non zero vectors \vec{a} , \vec{b} , \vec{c} and \vec{d} . The vectors \vec{a} , \vec{b} and \vec{c} are coplanar but not collinear pair by pair and vector \vec{d} is not coplanar with vectors \vec{a} , \vec{b} and \vec{c} and $(\vec{a} \ \vec{b}) = (\vec{b} \ \vec{c}) = \frac{\pi}{3}$, $(\vec{d} \ \vec{a}) = \alpha$ and $(\vec{d} \ \vec{b}) = \beta$, if $(\vec{d} \ \vec{c}) = \cos^{-1}(m\cos\beta + n\cos\alpha)$ then m-n is:
- **18.** Given $f^2(x) + g^2(x) + h^2(x) \le 9$ and U(x) = 3f(x) + 4g(x) + 10h(x), where f(x), g(x) and h(x) are continuous $\forall x \in \mathbb{R}$. If maximum value of U(x) is \sqrt{N} . Then the value of cube root of (N-1000) is:
- 19. In an equilateral $\triangle ABC$ find the value of $\frac{|\overrightarrow{PA}|^2 + |\overrightarrow{PB}|^2 + |\overrightarrow{PC}|^2}{R^2}$ where P is any arbitrary point lying on its circumcircle, is
- 20. If represents the position vector of point R in which the line AB cuts the plane CDE, where position vectors of points A, B, C, D, E are respectively $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + \hat{j} + 2\hat{k}$, $\vec{c} = -4\hat{j} + 4\hat{k}$, $\vec{d} = 2\hat{i} 2\hat{j} + 2\hat{k}$ and $\vec{e} = 4\hat{i} + \hat{j} + 2\hat{k}$, then \vec{r}^2 is:
- **21.** Line L_1 is parallel to vector $\vec{\alpha} = -3\hat{i} + 2\hat{j} + 4\hat{k}$ and passes through a point A(7, 6, 2) and line L_2 is parallel to a vector $\vec{\beta} = 2\hat{i} + \hat{j} + 3\hat{k}$ and passes through a point B(5, 3, 4). Now a line L_3 parallel to a vector $\vec{r} = 2\hat{i} 2\hat{j} \hat{k}$ intersects the lines L_1 and L_2 at points C and D respectively, then $|4\overrightarrow{CD}|$ is equal to :

Matrix Match Type:

22. Match the following.

Column – I	Column – II
(A) If D, E and F are the mid points of the sides BC, CA and AB respectively of a triangle ABC and λ is a scalar such that $\overline{AD} + \frac{2}{3}\overline{BE} + \frac{1}{3}\overline{CF} - \lambda\overline{AC}$, then λ is equal to	(p) 0
(B) If \bar{A} , \bar{B} and \bar{C} are vectors such that $ \bar{B} = \bar{C} $, then the value of $\left(\left(\left(\bar{A} + \bar{B}\right) \times \left(\bar{A} + \bar{C}\right)\right) \times \left(\bar{B} \times \bar{C}\right)\right) \cdot \left(\bar{B} + \bar{C}\right) \text{ is }$	(q) $\frac{1}{3}$
(C) In a \triangle ABC, points D, E and F are taken on the sides BC, CA and AB respectively such that $\frac{BD}{DC} = \frac{CE}{EA} = \frac{AF}{FB} = 2$. If $area(\triangle DEF) = \lambda$ $area(\triangle ABC)$, then λ is equal to	(r) $\frac{1}{2}$
(D) The corner P of the square OPQR is folded up so that the plane OPQ is perpendicular to the plane OQR. If θ is angle between OP and QR, then $ \cos\theta $ is equal to	(s) $\frac{3}{5}$
	(t) $\frac{3}{4}$

Subjective based Questions:

- 23. Let ABC be a triangle.Points M, N and P are taken on the sides AB, BC and CA respectively such that $\frac{AM}{AB} = \frac{BN}{BC} = \frac{CP}{CA} = \lambda$. Prove that the vectors \overrightarrow{AN} , \overrightarrow{BP} and \overrightarrow{CM} form a triangle. Also find λ for which the area of the triangle formed by these vectors is the least.
- **24.** Let P be an interior point of a triangle ABC and AP, BP, CP meet the sides BC, CA, AB is D, E, F respectively. Show that

$$\frac{AP}{PD} = \frac{AF}{FB} + \frac{AE}{EC}$$

25. Let PM be the perpendicular from the point P(1, 2, 3) to the x-y plane. If OP makes an angle θ with the positive direction of the z-axis and OM makes an angle ϕ with the positive direction of the x-axis, where O is the origin, then find θ and ϕ