TARGET: JEE- Advanced 2023

SCQ (Single Correct Type):

1. If α , β be the roots of $x^2 + x + 2 = 0$ and γ , δ be the roots of $x^2 + 3x + 4 = 0$, then $(\alpha + \gamma)(\alpha + \delta)(\beta + \gamma)(\beta + \delta)$ is equal to

$$(A) - 18$$

The number of value of k for which $(x^2 - (k - 2) x - 2k) (x^2 + kx + 2k - 4)$ is a 2. perfect square is

The value of 'a' for which the quadratic expression $ax^2 + |2a - 3| \times -6$ is positive for exactly 3. three integral values of x is

(A)
$$\left(-\frac{3}{5}, -\frac{1}{2}\right)$$

(B)
$$\left[-\frac{3}{5}, -\frac{1}{2} \right]$$

(A)
$$\left(-\frac{3}{5}, -\frac{1}{2}\right]$$
 (B) $\left[-\frac{3}{5}, -\frac{1}{2}\right]$ (C) $\left[-\frac{3}{5}, -\frac{1}{6}\right]$ (D) None of these

4. Consider the quadratic equation $ax^2 - bx + c = 0$, a, b, $c \in \mathbb{N}$. If the given equation has two distinct real roots belonging to (1,2) then

(A)
$$1 < a < 5$$

(C)
$$a = 4$$

(D)
$$a = 3$$

The set of values of 'a ' for which in-equation $(a-1)x^2 - (a+1)x + (a-1) \ge 0$ is true for all 5. $x \ge 2$ is

(A)
$$\left(\frac{7}{3},\infty\right)$$

(B)
$$\left(1, \frac{7}{3}\right]$$
 (C) $(-\infty, 1)$ (D) $(-3, -2)$

Let a_m (m = 1, 2, 3, ...p) be the possible integral values of 'a' for which the graphs of 6. $f(x) = ax^2 + 2bx + b$ and $g(x) = 5x^2 - 3bx - a$ meets at some point for all real values of b.

Let
$$T_r = \prod_{m=1}^{p} (r - a_m)$$
 and $S_n = \sum_{r=1}^{n} T_r (n \in N)$

sum of all the possible values of 'n' for which T_n vanishes, is ____ (D) 20

If p, q, r, s \in R, then equation $(x^2 + px + 3q) (-x^2 + rx + q) (-x^2 + sx - 2q) = 0$ has 7.

(A) 6 real roots

(B) at least two real roots

(C) 2 real and 4 imaginary roots

(D) 4 real and 2 imaginary roots

MCQ (One or more than one correct):

If $|ax^2 + bx + 1| \le 1$ for all x in [0, 1] then 8.

(A)
$$|a| \le 8$$

(B)
$$|b| > 8$$

(C)
$$b > 0$$

(D)
$$|a| + |b| \le 16$$

The set 'S' of all real 'x' for which $(x^2 - x + 1)^{x-1} < 1$ contains 9.

(A) (-5, -1)

(B) (-1, 1)

(C) (-1, 0)

(D) (-3, 1)

Let Δ^2 be the discriminant and α , β be the roots of the equation $ax^2 + bx + c = 0$. Then, 10. $2a\alpha + \Delta$ and $2a\beta - \Delta$ can be the roots of the equation

(A) $x^2 + 2b x + b^2 = 0$

(B) $x^2 - 2bx + b^2 = 0$

(C) $x^2 + 2bx - 3b^2 + 16$ ac = 0

(D) $x^2 - 2bx - 3b^2 + 16ac = 0$

Comprehension Type Question:

Comprehension # 1

If α , β , γ be the roots of the equation $ax^3 + bx^2 + cx + d = 0$. To obtain the equation whose roots are $f(\alpha)$, $f(\beta)$, $f(\gamma)$, where f is a function, we put $y = f(\alpha)$ and simplify it to obtain $\alpha = g(y)$ (some function of y). Now α is a root of the equation $ax^3 + cx + d = 0$, then we obtain the desired equation which is $a\{g(y)\}^3 + b\{g(y)\}^2 + c\{g(y)\} + d = 0$

For example, if α , β , γ are the roots of $ax^3 + bx^2 + cx + d = 0$. To find equation whose roots are

$$\frac{1}{\alpha}$$
, $\frac{1}{\beta}$, $\frac{1}{\gamma}$ we put $y = \frac{1}{\alpha} \Rightarrow \alpha = \frac{1}{\gamma}$

As α is a root of $ax^3 + bx^2 + cx + d = 0$

we get
$$\frac{a}{v^3} + \frac{b}{v^2} + \frac{c}{v} + d = 0$$
 $\Rightarrow dy^3 + cy^2 + by + a = 0$

This is desired equation.

On the basis of above information, answer the following questions:

11. If α , β are the roots of the equation $ax^2 + bx + c = 0$, then the roots of the equation $a(2x + 1)^2 + b(2x + 1)(x - 1) + c(x - 1)^2 = 0$ are-

 $(A) \ \frac{2\alpha + 1}{\alpha - 1} \ , \ \frac{2\beta + 1}{\beta - 1} \qquad (B) \ \frac{2\alpha - 1}{\alpha + 1} \ , \ \frac{2\beta - 1}{\beta + 1} \qquad (C) \ \frac{\alpha + 1}{\alpha - 2} \ , \ \frac{\beta + 1}{\beta - 2} \qquad (D) \ \frac{2\alpha + 3}{\alpha - 1} \ , \ \frac{2\beta + 3}{\beta - 1}$

12. If α , β are the roots of the equation $2x^2 + 4x - 5 = 0$, the equation whose roots are the reciprocals of $2\alpha - 3$ and $2\beta - 3$ is -

(A) $x^2 + 10x - 11 = 0$

(B) $11x^2 + 10x + 1 = 0$

(C) $x^2 + 10x + 11 = 0$

(D) $11x^2 - 10x + 1 = 0$

Numerical based Questions:

- 13. If $X^2 - 2P_SX + s = 0$, s = 1, 2, 3 are three equations of which each pair has exactly one root common and no root is common to all three equations, then the number of solutions of the triplet (p₁, p₂, p₃) is
- 14. If α and β are the roots of the equation $x^2 - a(x + 1) - b = 0$, where $a,b \in R - \{0\}$ and $(a + b) \neq 0$, then the value of $\frac{1}{\alpha^2 - a\alpha} + \frac{1}{\beta^2 - a\beta} - \frac{2}{a+b}$ is equal to
- Find product of all real values of x satisfying $(5+2\sqrt{6})^{x^2-3}+(5-2\sqrt{6})^{x^2-3}=10$ 15.
- If a, b are the roots of $x^2 + px + 1 = 0$ and c, d are the roots of $x^2 + qx + 1 = 0$. Then find the 16. value of $(a - c) (b - c) (a + d) (b + d)/(q^2 - p^2)$.

- 17. If α , β , γ , δ are the roots of the equation $x^4 Kx^3 + Kx^2 + Lx + M = 0$, where K, L & M are real numbers, then the minimum value of $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ is n. Find the value of n.
- 18. Consider $y = \frac{2x}{1 + x^2}$, where x is real, then the range of expression $y^2 + y 2$ is [a, b]. Find b – 4a.
- **19.** Find the values of a, for which the quadratic expression $ax^2 + (a 2) x 2$ is negative for exactly two integral values of x.
- **20.** If α , β are roots of the equation $x^2 34x + 1 = 0$, evaluate $\sqrt[4]{\alpha} \sqrt[4]{\beta}$
- 21. Find the number of real roots of $\left(x + \frac{1}{x}\right)^3 + \left(x + \frac{1}{x}\right) = 0$

Matrix Match Type:

22. Consider the equation $x^2 + 2(a - 1)x + a + 5 = 0$, where 'a' is parameter. Match of the real values of 'a' so that the given equation has

Column-I		Column-II	
Α	imaginary roots	р	$\left(-\infty, -\frac{8}{7}\right)$
В	one root smaller than 3 and other root greater than 3	q	(-1, 4)
С	exactly one root in the interval (1, 3) & 1 and 3 are not be root of the equation	r	$\left(-\frac{4}{3}, -\frac{8}{7}\right)$
D	one root smaller than 1 and other root greater than 3	S	$\left(-\infty,-\frac{4}{3}\right)$

Subjective Type Questions:

- 23. Let α_1 , α_2 and β_1 , β_2 be the roots of $ax^2 + bx + c = 0$ and $px^2 + qx + r = 0$ respectively. If the system of equations $\alpha_1 y + \alpha_2 z = 0$ and $\beta_1 y + \beta_2 z = 0$ has non-trivial solution, prove that $\frac{b^2}{q^2} = \frac{ac}{pr}$
- 24. The equation $ax^2 + bx + c = 0$ and $cx^2 + bx + a = 0$ have a common root and the difference of their other roots is one. Then show that $|ac| = |a^2 c^2|$. Hence or otherwise find the maximum and minimum value of $\left|\frac{a}{c}\right|$.
- 25. If the roots of the equation $ax^2 2bx + c = 0$ are imaginary, find the number of real roots of $4e^x + (a + c)^2 (x^3 + x) = 4b^2x$.
- 26. Prove that roots of $a^2x^2 + (b^2 + a^2 c^2)x + b^2 = 0$ are not real, if a + b > c and |a b| < c. (where a, b, c are positive real numbers)