MATHEMAI

TARGET: JEE- Advanced 2023

CAPS-19 **Differential Equation**

SCQ (Single Correct Type):

1. If
$$(1+x^2)\frac{dy}{dx} = x(1-y), y(0) = \frac{4}{3}$$
, then the value of $y(\sqrt{8}) + \frac{8}{9}$ is:

(A) 4

(B) 2

(C)3

(D) 5

Solution of the differential $y' = \frac{3yx^2}{y^3 + 2y^4}$ is 2.

(A) $x^3y^{-1} = \frac{2}{3}y^3 + c$ (B) $x^2y^{-1} = \frac{2}{3}y^3 + c$ (C) $xy^{-1} = \frac{2}{3}y^3 + c$

(D) None of these

If $ydx - dy = e^{-x}y^4dy$ and y = 1 at $x = -\ln 3$, then at y = 3, $x = \ln k$, k is 3.

(A) 21

(B) 24

(D) 81

The solution of the differential equation $(x \cot y + \ln(\cos x)) dy + (\ln(\sin y) - y \tan x) dx = 0$ is _____. 4.

(A) $(\sin x)^y (\cos y)^x = c$

(B) $(\sin y)^x (\cos x)^y = c$

(C) $(\sin x)^y (\cos y)^x = c$

(D) $(\cot x)^y (\cot y)^x = c$

If x and y are related, Also $\frac{d^2x}{dy^2} \cdot \left(\frac{dy}{dx}\right)^3 + k\frac{d^2y}{dx^2} = 0$. Then value of k is _____. 5.

(A) -1

(B) 1

Solution of the differential equation $y(xy+2x^2y^2)dx+x(xy-x^2y^2)dy=0$ is given by 6.

(A) $2\log |x| - \log |y| - \frac{1}{xy} = C$

(B) $2\log |y| - \log |x| - \frac{1}{xy} = C$

(C) $2\log |x| + \log |y| + \frac{1}{yy} = C$

(D) $2\log|y| + \log|x| + \frac{1}{xy} = C$

The solution of the differential equation $\frac{dy}{dx} = \frac{1}{xv(x^2 \sin y^2 + 1)}$ is, ('c' being an arbitrary 7.

constant).

(A) $x^2 \left(\cos y^2 - \sin y^2 - 2ce^{-y^2}\right) = 2$

(B) $x^2 \left(\cos y^2 - \sin y^2 - 2ce^{-y^2}\right) = 4c$

(C) $y^2 \left(\cos x^2 - \sin x^2 - 2ce^{-y^2}\right) = 2$ (D) $y^2 \left(\cos x^2 - \sin x^2 - ce^{-y^2}\right) = 4c$

MCQ (One or more than one correct):

- The solution of $\left(\frac{dy}{dx}\right)^2 2\left(x + \frac{1}{4x}\right)\frac{dy}{dx} + 1 = 0$ 8.

 - (A) $y = x^2 + c$ (B) $y = \frac{1}{2} \ln(x) + c, x > 0$ (C) $y = \frac{x}{2} + c$ (D) $y = \frac{x^2}{2} + c$
- A function y = f(x) satisfying the differential equation $\frac{dy}{dx}$. $\sin x y \cos x + \frac{\sin^2 x}{x^2} = 0$ is such 9.

that, $y \to 0$ as $x \to \infty$ then the statement which is correct is

(A) $\lim_{x \to 0} f(x) = 1$

- (B) $\int_{0}^{\pi/2} f(x) dx$ is less than $\frac{\pi}{2}$
- (C) $\int_{0}^{\pi/2} f(x) dx$ is greater than unity
- (D) f(x) is an odd function
- Let T be the triangle with vertices (0, 0), (0, c2) and (c, c2) and let R be the region between 10. y = cx and $y = x^2$ where c > 0 then
 - (A) Area (R) = $\frac{c^3}{c}$

(B) Area of R = $\frac{c^3}{3}$

(C) $\lim_{c\to 0^+} \frac{Area(T)}{Area(R)} = 3$

(D) $\lim_{c\to 0^+} \frac{Area(T)}{Area(R)} = \frac{3}{2}$

Comprehension Type Question:

Comprehension # 1

Suppose f(x) and g(x) are differentiable functions such that x g(f(x)). f'(g(x)) g'(x) = f(g(x)) g'(f(x))

 $f'(x) \ \forall \ x \in R \ and \ f(x) \ \& \ g(x) \ are \ positive \ for \ all \ x \in R. \ Also \ \hat{\int\limits_{\Sigma}} f(g(t)) \, dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x}) \\ \forall \ x \in R \ , \ g(f(0)) \ dt = \frac{1}{2} (1 - e^{-2x})$

= 1 and
$$h(x) = \frac{g(f(x))}{f(g(x))} \forall x \in R$$
.

- 11. The graph of y = h(x) is symmetric with respect to the line:
 - (A) x = -1
- (B) x = 0
- (C) x = 1
- (D) x = 2

- The value of f(g(0)) + g(f(0)) is equal to: 12.
 - (A) 1
- (B) 2

(C) 3

(D) 4

- 13. The largest possible value of $h(x) \forall x \in R$ is
 - (A) 1
- (B) $e^{1/3}$

(C) e

 $(D) e^2$

Comprehension # 2

Let
$$y = f(x)$$
 satisfy the equation $f(x) = (e^{-x} + e^x) \cos x - 2x - \int_0^x (x - t) f'(t) dt$. Then,

14. f(x) satisfies the differential equation

(A)
$$\frac{dy}{dx} + y = e^x (\cos x - \sin x) - e^{-x} (\cos x + \sin x)$$

(B)
$$\frac{dy}{dx} = y + e^{x}(\cos x + \sin x) + e^{-x}(\cos x - \sin x)$$

(C)
$$\frac{dy}{dx} + y = e^x (\cos x + \sin x) - e^{-x}(\cos x + \sin x)$$

(D) None of these

15.
$$f'(0) + f''(0) =$$

$$(A) -1$$

(D) 1

16. f(x) as a function of x equals

(A)
$$e^{-x} (\cos x - \sin x) + \frac{e^x}{5} (3\cos x + \sin x) + \frac{2}{5} e^{-x}$$

(B)
$$e^{-x} (\cos x + \sin x) + \frac{e^x}{5} (3\cos x - \sin x) - \frac{2}{5}e^{-x}$$

(C)
$$e^{-x} (\cos x - \sin x) + \frac{e^x}{5} (3\cos x - \sin x) + \frac{2}{5} e^{-x}$$

(D) None of these

Numerical based Questions:

17. If $ye^y dx = (y^3 + 2xe^y) dy$, y(0) = 1, then the value of x when y = 1 is

18. If particular solution of $p + \cos px \sin y = \sin px \cos y$ where $\left(p = \frac{dy}{dx}\right)$ is $y = a\sqrt{x^2 - b} - \sin^{-1}\frac{\sqrt{x^2 - c}}{x}$ then evaluate $\left|\frac{b + c}{a}\right|$

19. The solution of $x^2 dy - y^2 dx + xy^2 (x - y) dy = 0$ is $\ln \left| \frac{1}{x} - \frac{1}{y} \right| = \frac{y^2}{k} + C$, then the value of k is _____.

Suppose a solution of the differential equation $\left(xy^3 + x^2y^7\right)\frac{dy}{dx} = 1$ satisfies the initial condition $y\left(\frac{1}{4}\right) = 1$. Then the value of $-\frac{5}{4} \times \frac{dy}{dx}$ when y = -1, is _____.

21. Let y = f(x) be a curve C_1 passing through (2,2) and $\left(8, \frac{1}{2}\right)$ and satisfying a differential equation $y\left(\frac{d^2y}{dx^2}\right) = 2\left(\frac{dy}{dx}\right)^2$. Curve C_2 is the director circle of the circle $x^2 + y^2 = 2$. If the shortest distance between the curves C_1 and C_2 is $\left(\sqrt{p} - q\right)$ where $p, q \in N$, then find the value of $(p^2 - q)$.

Matrix Match Type:

22. Match the following

Column-I	Column-II
(A) Solution of the differential equation	(p) $x = \frac{1}{2}e^{2y} + c_1y + c_2$
$y'' + e^{2y}(y')^3 = 0$ is	4 13 2
(B) Solution of the differential equation	(q) $y^2 + 2xy = 3x^3$
$2x(x+y)y' = 3y^2 + 4xy$ at $y(1) = 1$ is	
(C) Equation of orthogonal trajectories of the	(r) $2x + 4y + \sin 2x = c$
curve y = tanx + k is	
(D) Solution of the differential equation	(s) $y^2 = \left(ce^{4x^2} - \frac{1}{4}\right)^{-1}$
$y' + 4xy + xy^3 = 0$ is	4)

(A) A-p; B-q; C-r; D-s

(B) A-s; B-p; C-r; D-q

(C) A-p; B-q; C-s; D-r

(D) A-p; B-s; C-q; D-r

23. Column I Column II

- (A) If the function $y = e^{4x} + 2e^{-x}$ is a solution of the differential (P) 3 equation $\frac{d^3y}{dx^3} 13\frac{dy}{dx} = K$ then the value of K/3 is
- (B) Number of straight lines which satisfy the differential equation (Q) 4 $\frac{dy}{dx} + x \left(\frac{dy}{dx}\right)^2 y = 0 \text{ is}$
- (C) If real value of m for which the subtitution, $y = u^m$ will transform (R) 2 the differential equation, $2x^4y \frac{dy}{dx} + y^4 = 4x^6$ into a homogenous equation then the value of 2m is
- (D) If the solution of differential equation $x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} = 12y$ is (S) 7 $y = Ax^m + Bx^{-n}$ then | m + n | can be
- (A) A(R); B(Q); C(S); D(P)
- (B) A(P); B(S); C(Q); D(R)
- (C) A(Q); B(R); C(P); D(S)
- (D) A(S); B(P); C(Q); D(R)

Subjective based Questions:

24. Let the curve y = f(x) passes through (4, -2) satisfy the differential equation,

$$y(x + y^3) dx = x(y^3 - x) dy & let y = g(x) = \int_{1/8}^{\sin^2 x} \sin^{-1} \sqrt{t} dt + \int_{1/8}^{\cos^2 x} \cos^{-1} \sqrt{t} dt$$
,

- $0 \le x \le \frac{\pi}{2}$. Then find the area of the region bounded by curves y = f(x), y = g(x) and x = 0.
- 25. Solve the equation $x \int_{0}^{x} y(t) dt = (x+1) \int_{0}^{x} t y(t) dt$, x > 0