

TARGET: JEE- Advanced 2023

CAPS-18

Area Under the Curves

SCQ (Single Correct Type):

2.

6.

	above the first line for all $a \ge 1$, is equal to $\frac{2}{3}((2a))^{3/2} - 3a + 3 - 2\sqrt{2}$ then $f(x) =$				
	(A) $2\sqrt{2x}$; $x \ge 1$	(B) $\sqrt{2x}$; $x \ge 1$	(C) $2\sqrt{x}$; $x \ge 1$	(D) None of these	
3.	A variable circle C touches $y = 0$ and passes through the point (0,1). Let the locus of the centre of C is				
	the curve P. The area enclosed by the curve P and the line $x + y = 2$ is				
	(A) $\frac{14}{3}$	(B) $\frac{16}{3}$	(C) $\frac{15}{3}$	(D) $\frac{11}{3}$	
4.	Let n S_n be the area of the figure enclosed by a curve $y = x^3(1-x^2)^n, 0 \le x \le 1$ and the x-axis. The value				
	of $\lim_{n\to\infty}\sum_{k=1}^n S_k$ is				
	(A) $\frac{1}{2}$	(B) $\frac{1}{3}$	(C) $\frac{1}{4}$	(D) 1	
5.	Find the area of the region enclosed between the curve $y = 2x^4 - x^2$, the x-axis and the ordinates of the				
	points where the curve has local minima				
	(A) $\frac{7}{60}$	(B) $\frac{7}{80}$	(C) $\frac{7}{120}$	(D) $\frac{7}{160}$	

Let f (x) = $2\sqrt{x}$ and g(x) = $2\sqrt{1-x}$ be two functions then the area bounded by y = f(x), y = g(x) and x

The area bounded by the lines y = 2, x = 1, x = a and the curve y = f(x), which cuts the last two lines

(A) $\frac{1}{3\sqrt{2}}$ sq unit (B) $\frac{2}{3\sqrt{2}}$ sq unit (C) $\frac{1}{\sqrt{2}}$ sq unit (D) $\frac{4}{3\sqrt{2}}$ sq unit

 $\text{Let } f(x) = \begin{cases} \text{Ln}(x-[x]); & x \not\in I \\ 0 & ; & x \in I \end{cases} \text{ Area enclosed by curves } y = f(x), y = f(\mid x \mid), \ -5 \le x \le 5 \text{ and } y = 0 \text{ is } \end{cases}$ (A) 5 (1 - 1n2)(B) 0(C) 51n2 (D) none of these

The area bounded by the curves y = 2 - |x - 1|, $y = \sin x$; x = 0 and x = 2 is _____. 7.

(A) $1 + 2\cos^2 1$

(B) $2 + \sin^2 1$

(C) $\frac{\pi}{2}$ (D) 1+ log2

The area bound by the curve y = f(x), the x-axis and the line y = 1, where $f(x) = 1 + \frac{1}{x} \int_{1}^{x} f(t) dt$, $(x \ne 0)$ is 8.

(A) $2\left(1-\frac{1}{e}\right)$

(B) $2\left(1+\frac{1}{e}\right)$ (C) $\left(1+\frac{1}{e}\right)$

(D) $\left(1-\frac{1}{e}\right)$

- Given f (x) = $x^3 + x 2$, f:R \rightarrow R, area of region bounded by y = f(x), $y = f^{-1}(x)$ and xy = 0 in 1st 9. quadrant is A, where $A = 3t - \frac{5}{2}$, where $t = a^{1/b}$ and 3(a+b) = n; $a,b,n \in \mathbb{N}$ and a is prime.
 - Difference of last two digits of a^{a11}-36 is

(A) 0

(B) 1

(C)2

(D) 3

MCQ (One or more than one correct):

The area bounded by the curve $y = f^{-1}(x)$, x-axis, x = 0 and $x = \pi$, where f(x) is given by $f(x) = x + \sin x$ 10. is $\frac{\pi^2 - a}{b}$ then the correct statement are :

(A) a = 2b

(B) a + 2b = 8

(C) 3a =b

(d) $\left(\frac{2\pi}{b}, \frac{a\pi}{4}\right)$ lies on f(x)

If A_i is the area bounded by $|x-a_i|+|y|=b_i, i\in\mathbb{N}$ where 1 $a_{i+1}=a_i+\frac{3}{2}b_i$ and $b_{i+1}=\frac{b_i}{2}, a_1=0, b_1=32$, 11. then _____.

(A) $A_3 = 128$

(B) $A_3 = 256$

(C) $\lim_{n\to\infty} \sum_{i=1}^{n} A_i = \frac{8}{3}(32)^2$ (D) $\lim_{n\to\infty} \sum_{i=1}^{n} A_i = \frac{4}{3}(16)^2$

Let T be the triangle with vertices (0, 0), $(0, c^2)$ and (c, c^2) and let R be the region between y = cx and 12. $y = x^2$ where c > 0 then

(A) Area (R) = $\frac{c^3}{6}$

(B) Area of R = $\frac{c^3}{2}$

(C) $\lim_{c\to 0^+} \frac{Area(T)}{Area(R)} = 3$

(D) $\lim_{c\to 0^+} \frac{\text{Area}(T)}{\text{Area}(R)} = \frac{3}{2}$

Comprehension Type Question:

Comprehension # 1

Let $f: \mathbb{R} \to \mathbb{R}$ be continuous function and bijective, defined such that $f(\alpha) = O(\alpha \neq 0)$. The area bounded by y = f(x), $x = \alpha$, $x = \alpha - t$ is equal to area bounded by y = f(x), $x = \alpha$, $x = \alpha + t$, $\forall t \in \mathbb{R}$ then

13. y = f(x) is symmetrical about the point

(0,0)

(B) $(0, \alpha)$

(C) $(\alpha,0)$

(D) (α,α)

14. $f(2\alpha)$ equal to _____.

(A) $f(\alpha)$

(B) $-f(\alpha)$

(c) f(0)

(d) - f(0)

Comprehension # 2

If y = f(x) is a monotonic function in (a, b), then the area bounded by the ordinates at x = a, x = b, y = f(x) and y = f(c) (where $c \in (a, b)$) is minimum when $c = \frac{a + b}{2}$.

Proof: $A = \int_{a}^{c} (f(c) - f(x)) dx + \int_{c}^{b} (f(x) - f(c)) dx$

=
$$f(c)(c-a) - \int_{c}^{c} (f(x)) dx + \int_{c}^{b} (f(x)) dx - f(c)(b-c)$$

$$\Rightarrow A = [2c - (a + b) f(c) + \int_{c}^{b} (f(x)) dx - \int_{a}^{c} (f(x)) dx$$

Differetiating w.r.t. c,

$$\frac{dA}{dc} = [2c - (a+b)] f'(x) + 2 f(c) + 0 - f(c) - (f(c))$$

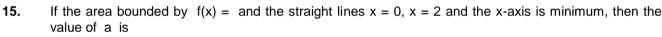
for maxima and minima $\frac{dA}{dc} = 0$

$$\Rightarrow$$
 f'(x)[2c - (a + b)] = 0 (as f'(c) \neq 0)

hence
$$c = \frac{a+b}{2}$$

Also
$$c < \frac{a+b}{2}$$
, $\frac{dA}{dc} < 0$ and $c > \frac{a+b}{2}, \frac{dA}{dc} > 0$.

Hence A is minimum when $c = \frac{a+b}{2}$.



(A)
$$\frac{1}{3}$$

(D)
$$\frac{2}{3}$$

у 🛊

16. The value of the parameter a for which the area of the figure bounded by the abscissa axis, the graph of the function $y = x^3 + 3x^2 + x + a$ and the straight lines, which are parallel to the axis of ordinates and cut the abscissa axis at the point of extremum of the function, is the least, is

$$(C) - 1$$

17. If the area enclosed by $f(x) = \sin x + \cos x$, y = a between the two consecutive points of extremum is minimum, then the value of a is

$$(B) - 1$$

Comprehension #3

Consider the areas S_0 , S_1 , S_2 bounded by the x-axis and half-waves of the curve $y = e^{-x} \sin x$, where $x \ge 0$.

18. The value of S_0 is

(A)
$$\frac{1}{2} (1 + e^{\pi})$$
 sq. units

(B)
$$\frac{1}{2} (1 + e^{-\pi})$$
 sq. units

(C)
$$\frac{1}{2} (1 - e^{-\pi})$$
 sq. units

(D)
$$\frac{1}{2}(e^{\pi}-1)$$
 sq. units.

19. The sequence S_0 , S_1 , S_2 ,, forms a G.P. with common ratio

(A)
$$\frac{e^{\pi}}{2}$$

(B) $e^{-\pi}$

(C) e^{π}

(D) $\frac{e^{-\pi}}{2}$

 $\sum_{n=0}^{\infty} S_n$ is equal to 20.

(A)
$$\frac{1+e^{\pi}}{1-e^{-\pi}}$$

(A)
$$\frac{1+e^{\pi}}{1-e^{-\pi}}$$
 (B) $\frac{\frac{1}{2}(1+e^{\pi})}{1-e^{-\pi}}$ (C) $\frac{1}{2(1-e^{-\pi})}$

(C)
$$\frac{1}{2(1-e^{-\pi})}$$

(D) None of these

Numerical based Questions:

- If A is the area of the figure bounded by the straight line x = 0 and x = 2 and the curves $y = 2^x$ and y = 021. $2x - x^2$, then the value of $6\left(\frac{3}{\ell n^2} - A\right)$ is
- The graph of $y^2 + 2xy + 40|x| = 400$ divides the plane into regions. The area of the bounded region is 22.
- Area enclosed by the curve $4 \le x^2 + y^2 \le 2(|x| + |y|)$ is (in sq. units) 23.
- The area bounded by the curves $y=-\sqrt{4-x^2}$, $x^2=-y\sqrt{2}$ and x=y can be expressed in the form of 24. $\pi + \frac{\lambda}{\mu}$, (λ , μ being relatively prime positive integers) then $\lambda + \mu$ equals to _____.
- Find the area enclosed between the curves: $y = log_e(x + e)$, $x = log_e(1/y)$ & the x-axis. 25.

Matrix Match Type:

26. Match the following

Column-I	Column-II
(a) Let $f(K) = \frac{K}{2009}$ and $g(K) = \frac{(f(K))^4}{(1 - f(K))^4 + (f(K))^4}$ and $S = \sum_{K=0}^{2009} g(K)$	(p) 0
then sum of the diagonal in S =	
(b) $f: D \to \mathbb{R}$ such that $f(k) = \sqrt{\sin(\cos x)} + \log_e(-2\cos^2 x + 3\cos x + 1)$	(q) 1
then $\int_{x_1}^{x_2} \left[\cos x - \frac{1}{2} \right] dx$ is equal to, $x_1, x_2 \in D$ and [.] denotes	
greatest integer function.	
(c) The area of region, represented by $ x + y \le 2$ and $x^2 \le y$ is S	(r) 7
square units then 3S =	
$\int_{1}^{y} \left[\tan^{-1} x \right] dx$	(s) 6
(d) $\lim_{y\to\infty} \frac{1}{\int_{1}^{y} \left[1+\frac{1}{x}\right] dx} = $ ([.]) denotes greatest integer function)	

(A)
$$A \rightarrow s$$
; $B \rightarrow p$; $C \rightarrow s$; $D \rightarrow q$

(B)
$$A \rightarrow p$$
; $B \rightarrow s$; $C \rightarrow r$; $D \rightarrow q$

(C)
$$A \rightarrow s$$
; $B \rightarrow p$; $C \rightarrow r$; $D \rightarrow q$

(D)
$$A \rightarrow s$$
; $B \rightarrow p$; $C \rightarrow r$; $D \rightarrow s$

27. Column - I

Column-II

- (A) The area bounded y the curve y = x | x |, x-axis and the ordinates x = 1, x = -1
- (P) $\frac{10}{3}$ sq. units
- (B) The area of the region lying between the line x y + 2 = 0
- (Q) $\frac{64}{3}$ sq. units

and the curve $x = \sqrt{y}$

- (C) The area enclosed between the curves $y^2 = x$ and y = |x|
- (R) $\frac{2}{3}$ sq. units

(D) The area bounded by parabola $y^2 = x$, straight line y = 4 and y-axis

(S) $\frac{1}{6}$ sq. units

(A)
$$A \rightarrow Q$$
; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow R$

(B)
$$A \rightarrow S$$
; $B \rightarrow R$; $C \rightarrow Q$; $D \rightarrow P$

(C)
$$A \rightarrow R$$
; $B \rightarrow P$; $C \rightarrow S$; $D \rightarrow Q$

(D)
$$A \rightarrow Q$$
; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow S$