

MATHEMATICS

TARGET: JEE- Advanced 2023

CAPS-15

Probability

SCQ (Single Correct Type)	•			
1.	Of all the function that can be defined from the set A : $\{1, 2, 3, 4\} \rightarrow B(5, 6, 7, 8, 9)$, a mapping is				
	randomly selected. The chance that the selected mapping is strictly monotonic, is				
	(A) $\frac{1}{125}$	(B) $\frac{2}{125}$	(C) $\frac{5}{4096}$	(D) $\frac{5}{2048}$	
2.	On a Saturday night 20	% of all drivers in U.S.A	. are under the influenc	e of alcohol. The probability that	
	a driver under the influe	ence of alcohol will have	an accident is 0.001. The	ne probability that a sober driver	
	will have an accident is	0.0001. If a car on a saf	turday night smashed in	to a tree, the probability that the	
	driver was under the inf	luence of alcohol, is			
	(A) 3/7	(B) 4/7	(C*) 5/7	(D) 6/7	
3.	There are six familie	es each consisting of	a husband, a wife a	nd a child. A group of three	
	consisting of a man,	a woman and a child i	s said to form a trio.	f 6 persons are selected, the	
	probability that there	will be two trios in which	ch exactly one trio is o	of the same family is	
	(A) $\frac{125}{1547}$	(B) $\frac{25}{221}$	(C) $\frac{30}{1547}$	(D) $\frac{60}{1547}$	
	1547	^(D) 221	1547	(^{D)} 1547	
4.	There are four seat	s numbered 1, 2, 3	, 4 in a room and	four persons having tickets	
	corresponding to the	se seats (one person h	naving one ticket). Nov	w the person having the ticket	
	number 1, enters into	the room and sits on	any of the seat at ran	dom. Then the person having	
	the ticket number 2,	enters in room. If his s	seat is empty then he	sits on his seat otherwise he	
	sits on any of the en	npty seat at random.	Similarly the other pe	rsons sit. Probability that the	
	person having ticket r	numbered 4 gets the s	eat number 4 is		
	(A) 1/2	(B) 1/4	(C) 1/8	(D) 1/16	
5.	'A' tosses a fair coin.	If it shows a tail ' A' is	asked to roll a fair die	and A's score is the number	
	that die shows. If the	coin shows a head, 'A	A' is asked to toss five	more coins and A's score is	
	total number of head	s shown (including the	e first coin). If ' A' tell	s you that his score is only 3	
	then the probability that 'A' rolls a die is				
	(A) 23	_(B) 1	(C) 8	(D) 7	
	(A) $\frac{23}{96}$	(B) $\frac{1}{6}$	(C) $\frac{8}{23}$	(D) $\frac{7}{44}$	

MCQ (One or more than one correct):

6. A fair die is rolled four times. Find the probability that each number is no smaller than the preceding number.

7	1	1	11
(A) $\frac{7}{72}$	(B) $<\frac{1}{2}$	$(C) > \frac{1}{2}$	(D) $\frac{11}{72}$
72		· · · 3	` 72

7.	If three numbers are chosen randomly from the se	et { 1,3,3 ² ,,3 ⁿ } without replacement, then
	the probability that they form an increasing geome	tric progression is
	(A) $\frac{3}{2n}$ if n is odd	(B) $\frac{3}{2n}$ if n is even
	(C) $\frac{3n}{2(n^2-1)}$ if n is even	(D) $\frac{3n}{2(n^2-1)}$ if n is odd
8.	Let 'A' and 'B' be independent events such that	$P(A) > \frac{1}{2}, P(A \cap \overline{B}) = \frac{3}{25} \text{ and } P(\overline{A} \cap B) = \frac{8}{25}.$

Then which of the following statements is/are correct?

(A)
$$(P(A))^2 + (P(B))^2 = 1$$
 (B) $P(A)$ satisfies $25x^2 - 20x + 3 = 0$

(C) P(A) satisfies
$$5x^2 - 20x + 3 = 0$$
 (D) $(P(A))^2 + (P(B))^2 = 2$

Comprehension Type Question:

Comprehension # 1

A bag contains 6 different balls of three colours white, green and red (at least one ball of each colour.

9. The probability that the bag contains 2 balls of each colour is

(A)
$$\frac{1}{3}$$
 (B) $\frac{1}{7}$ (C) $\frac{1}{9}$

10. Three balls are picked up at random and found to be one of each colour. The probability that the bag contained 4 red balls

(A)
$$\frac{1}{10}$$
 (B) $\frac{1}{14}$ (C) $\frac{1}{7}$ (D) $\frac{7}{25}$

11. Three balls are picked up at random and found to be one of each colour. The probability that the bag contained equal number of white and green balls is

(A)
$$\frac{3}{14}$$
 (B) $\frac{3}{10}$ (C) $\frac{2}{7}$ (D) $\frac{7}{25}$

Comprehension # 2

A player tosses a coin and scores one point for every head and two points for every tail that turns up. He plays on until his score reaches 'n ' or passes n. Pn denotes the probability of getting a score of exactly n.

12. The value of P_n is equal to

(A)
$$\frac{1}{2} \left[P_{n-1} + P_{n-2} \right]$$
 (B) $\frac{1}{2} \left[2 P_{n-1} + P_{n-2} \right]$ (C) $\frac{1}{2} \left[P_{n-1} + 2 P_{n-2} \right]$ (D) None of these

The value of $P_n + \frac{1}{2}P_{n-1}$ is equal to 13.

(A)
$$\frac{1}{2}$$
 (B) $\frac{2}{3}$ (C) 1 (D) $\frac{1}{4}$

14. Which of the following is not true?

(A)
$$P_{100} > \frac{2}{3}$$

(B)
$$P_{101} < \frac{2}{3}$$

(A)
$$P_{100} > \frac{2}{3}$$
 (B) $P_{101} < \frac{2}{3}$ (C) $P_{100}, P_{101} < \frac{2}{3}$ (D) None of these

Comprehension #3

 2^{n} (n \in N, n \geq 2) players of equal strength are playing a knock out tournament. They are paired randomly in all the rounds, and the winner reaches the next round.

The probability Pn that exactly one of the two specified players P1 and P2 reaches the semifinals is 15. given by

(A)
$$\frac{8(2^n-4)}{2^n(2^n-1)}$$

(B)
$$\frac{6(2^n-4)}{2^n(2^n-1)}$$

$$\text{(A)} \ \frac{8 \Big(2^n - 4 \Big)}{2^n \Big(2^n - 1 \Big)} \qquad \qquad \text{(B)} \ \frac{6 \Big(2^n - 4 \Big)}{2^n \Big(2^n - 1 \Big)} \qquad \qquad \text{(C)} \ \frac{4 \Big(2^n - 4 \Big)}{\Big(2^n - 2 \Big) \Big(2^n - 1 \Big)} \qquad \qquad \text{(D)} \ \frac{8 \Big(2^n - 4 \Big)}{\Big(2^n - 2 \Big) \Big(2^n - 1 \Big)}$$

- 16. If there are 16 players including P₁ and P₂ then the chance that exactly one of either P₁ or P₂ reaches the semifinals, is
- (A) $\frac{8}{35}$ (B) $\frac{3}{10}$ (C*) $\frac{2}{5}$ (D) $\frac{16}{25}$
- As n tends to infinity then the value of Pn 17.
 - (A) approaches $\frac{1}{2}$.
 - (B) decreases and tends to approches zero.
 - (C) equals zero.
 - (D) first increases upto 0.5 and then decreases to zero value.

Numerical based Questions:

- 18. During a power blackout, 100 persons are arrested on suspect of looting. Each is given a polygraph test. From past experience it is known that the polygraph is 90% reliable when administered to a guilty person and 98% reliable when given to some one who is innocent. Suppose that of the 100 persons taken into custody, only 12 were actually involved in any wrong doing. If the probability that a given suspect is innocent given that the polygraph says he is guilty is a/b where a and b are relatively prime, find the value of (a + b).
- 19. Six faces of a cube are numbered randomly 1, 2, 3, 4, 5, 6. The probability that faces 1 and 6, 6 and 3, 3 and 1 will share an edge is $\frac{m}{n}$ (in its lowest form). m+ n = _____.
- 20. There are two dice A and B both having six faces. Die A has three faces marked with 1, two faces marked with 2 and one face marked with 3. Die B has one face marked with 1, two faces marked with 2 and three faces marked with 3. Both the dice are thrown randomly once. If E be the event of getting sum of the numbers appearing on top faces equal to x and if P(E) be the probability of event E, then find the value of x when P(E) is maximum.

- 21. 3 coins are thrown at one time and we remove those coins which show tails. Then we throw the remaining coins at one time and we remove those coins which show tails. This is done repeatedly until all of coins are removed. If the probability that the trials are ended in the 2nd round is P, then the value of [10P] is _____ (where [.] denotes the greatest integer function).
- Suppose n(> 4) people are seated at a round table. If three people are selected at random, and p_n is the probability that atleast two of them are sitting next to each other, then $p_7 = \frac{a}{b}$ (when $\frac{a}{b}$ is expressed in lowest terms) where a + b =
- 23. Five cards are drawn randomly one by one with replacement from a well shuffled pack of 52 playing cards. The probability that these cards will contain cards of each suit is
 - (A) $\frac{15}{64}$

(B) $\frac{17}{64}$

Column-l

- (C) $\frac{21}{64}$
- (D) $\frac{19}{64}$

Column-II

Matrix Match Type:

24. Match the following:

 (A) A and B play a game with a pair of dice each. A has a "good throw" if the sum on A's dice is 7, while B has a "good throw" if the sum on B's dice is 4. In each round they throw simultaneously. If one of them has a "good throw" and the other does not, the player having a "good throw" is declared a winner, otherwise they throw again. The probability that A wins is (B) Suppose A nad B shoot independently until each hits his target. They have probabilities 3/5 and 5/7 respectively of hitting the targets at each shot. The probability that B will 	
if the sum on B's dice is 4. In each round they throw simultaneously. If one of them has a "good throw" and the other does not, the player having a "good throw" is declared a winner, otherwise they throw again. The probability that A wins is (B) Suppose A nad B shoot independently until each hits his target. They have probabilities $\frac{3}{5}$ and $\frac{5}{7}$ respectively of	
simultaneously. If one of them has a "good throw" and the other does not, the player having a "good throw" is declared a winner, otherwise they throw again. The probability that A wins is (B) Suppose A nad B shoot independently until each hits his target. They have probabilities $\frac{3}{5}$ and $\frac{5}{7}$ respectively of	
other does not, the player having a "good throw" is declared a winner, otherwise they throw again. The probability that A wins is (B) Suppose A nad B shoot independently until each hits his target. They have probabilities $\frac{3}{5}$ and $\frac{5}{7}$ respectively of	
a winner, otherwise they throw again. The probability that A wins is (B) Suppose A nad B shoot independently until each hits his target. They have probabilities $\frac{3}{5}$ and $\frac{5}{7}$ respectively of	
wins is (B) Suppose A nad B shoot independently until each hits his target. They have probabilities $\frac{3}{5}$ and $\frac{5}{7}$ respectively of (r) $\frac{11}{16}$	
(B) Suppose A nad B shoot independently until each hits his target. They have probabilities $\frac{3}{5}$ and $\frac{5}{7}$ respectively of	
target. They have probabilities $\frac{3}{5}$ and $\frac{5}{7}$ respectively of $\frac{(r)}{16}$	
target. They have probabilities $\frac{1}{5}$ and $\frac{1}{7}$ respectively of	
hitting the targets at each shot. The probability that B will	
intaining and tangete at each enter the probability and 2 min	
requre more tries than A to hit the target is	
(C) The probability of a missile being destroyed before hitting the	
(C) The probability of a missile being destroyed before hitting the target is $\frac{1}{3}$. If the missile is not destroyed, the probability of	
hittingthe target is $\frac{3}{4}$. Three missiles are fired. The	
probability of exactly 2 hitting the target is	
(D) The probability of a bomb hitting a bridge is $\frac{1}{2}$. At least two (s) $\frac{6}{31}$	
direct hits are needed to destroy it. If n is the least number of	
bombs required so that the probability of the bridge getting	
destroyed is greater than 0.9, then the value of $\frac{2}{n}$ is	
(t) $\frac{3}{16}$	

(A)
$$A \rightarrow s$$
; $B \rightarrow s$; $C \rightarrow p$; $D \rightarrow q$

(B)
$$A \rightarrow p$$
; $B \rightarrow s$; $C \rightarrow p$; $D \rightarrow q$

(C)
$$A \rightarrow t$$
; $B \rightarrow s$; $C \rightarrow p$; $D \rightarrow q$

(D)
$$A \rightarrow r$$
; $B \rightarrow s$; $C \rightarrow p$; $D \rightarrow q$

25. n whole numbers are randomly chosen and multiplied.

Column-I	Column-II
(A) The probability that the last digit is 1,3,7 or 9 is	(p) $\frac{8^n - 4^n}{10^n}$
(B) The probability that the last digit 2,4,6 or 8 is	(q) $\frac{5^n - 4^n}{10^n}$
(C) The probability that last digit is 5 is	$(r) \frac{4^{n}}{10^{n}}$
(D) The probability that the last digit is zero is	(s) $\frac{10^{n} - 8^{n} - 5^{n} + 4^{n}}{10^{n}}$
	(t) none of these

(A) $A \rightarrow r$; $B \rightarrow p$; $C \rightarrow q$; $D \rightarrow s$

(B) $A \rightarrow s$; $B \rightarrow p$; $C \rightarrow q$; $D \rightarrow r$

(C) $A \rightarrow r$; $B \rightarrow q$; $C \rightarrow p$; $D \rightarrow s$

(D) $A \rightarrow q$; $B \rightarrow p$; $C \rightarrow r$; $D \rightarrow s$