MATHEMATICS

TARGET: JEE- Advanced 2023

(D) Statement-1 is False, Statement-2 is True

k is the real number $k \neq 1,2,3$ such that P(k) = 0, then k is equal to

(B) $\frac{319}{37}$

8.

(A) $\frac{317}{37}$

CAPS-13

AOD-2

SCQ (Single Correct Type):

1.	$f:[0,4] \to R$ is a differentiable function. Then for some a, b $\in (0,4)$, $f^2(4)-f^2(0)=$			
	(A) 8f'(a) . f(b)	(B) 4f'(b) f(a)	(C) 2f' (b) f(a)	(D) f'(b) f(a)
2.	The values of the parameter 'k' for which the equation $x^4 + 4x^3 - 8x^2 + k = 0$ has all roots real is g			
	(A) $k \in (0,3)$	(B) $k \in (0, 128)$	(C) $k \in (3, 128)$	(D) $k \in (128, \infty)$
3.	A composite function $(f_1o\ f_2o\ f_3oof_{21})(X)$ is an increasing function. If number of increasing function			
	in the set $\left\{f_1, f_2, \ldots, f_{21}\right\}$ is r and remaining are decreasing functions, then maximum value of r(21-r) is			
	(A) 110	(B) $\frac{441}{4}$	(c) 105	(d) None of these
4.	A sector subtends an angle 2α at the centre then the greatest area of the rectangle inscribed in the sector is (R is radius of the circle)			
	(A) $R^2 \tan \frac{\alpha}{2}$	(B) $\frac{R^2}{2} \tan \frac{\alpha}{2}$	(C) $R^2 \tan \alpha$	(D) $\frac{R^2}{2} \tan \alpha$
5.	If the graphs of the functions $y = \ln x \& y = ax$ intersect at exactly two points, then			
	(A) a∈(0,e)	(B) $a \in \left(0, \frac{1}{e}\right)$	(C) a∈(−e,1)	(d) a∈(1,e)
6.	Let f (x) be a polynomial of degree 3 satisfying $f(3) = 5$, $f(-1) = 9$, $f(x)$ has minimum at $x = 0$ and $f'(x)$ has maximum at $x = 1$. The distance between local maximum and local minimum of $f(x)$ is			
	(A) 3√2	(B) √15	(C) 2√5	(D) $4\sqrt{3}$
7.	Statement 1: In $\triangle ABC$, $\sin A + \sin B \sin C \le \frac{3\sqrt{3}}{2}$ Statement 2: Let $y = f(x)$ be a twice differentiable function such that $f''(x) < 0$ in $[a,b]$ then $\frac{f(a_1) + f(a_2) + f(a_3)}{3} \ge f\left(\frac{a_1 + a_2 + a_3}{3}\right) \text{ for } a_1, a_2, a_3 \in [a,b]$			
	(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct Explanation for Statement-1			
	(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (C) Statement-1 is True, Statement-2 is False			

Let P(x) be a fourth degree polynomial with derivative P'(x). Such that P(1) = P(2) = P(3) = P'(7) = 0. Let

(C) $\frac{321}{37}$

- 9. Let f(x) = 2x(2-x), $0 \le x \le 2$. The number of solution of $f(f(x)) = \frac{x}{2}$ is
 - (A) 2

- (B) 4
- (C) 8
- (D) 12
- **10.** Set of values of a for which one negative and two positive real roots of the equation $x^3 3x + a = 0$ are possible, is _____.
 - (A)(0,2)
- (B) (0. 4)
- (C)(2,4)
- (D) (0, 10)

11. $f(x) = \begin{cases} e^x - 2 - e^{-2}, x < -2 \\ x^2 - x + \lambda, -2 \le x \le 2 \\ -\mu \ell nx, x > 2 \end{cases}$

If y = f(x) has local maxima at x = -2, then range of λ is

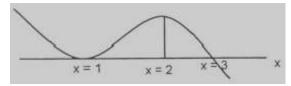
- (A) (*-∞*,8]
- (B) [−8,∞)
- (C) [-8, 8]
- (D) $(-\infty, -8] \cup [8, \infty]$

MCQ (One or more than one correct):

- 12. Consider the function $f : R \to R$ defined as $f(x) = x + \sin x$. Which of the following is/are the correct statement(s)?
 - (A) The function is strictly increasing at every point on R except at 'x' equal to an odd integral multiple of π where the derivative of f (x) is zero and where the function f is not strictly increasing.
 - (B) The function is bounded in every bounded interval but unbounded on whole real line.
 - (C) The graph of the function y = f(x) lies in the first and third quadrants only.
 - (D) The graph of the function y = f(x) cuts the line y = x at infinitely many points.
- 13. Let f(x) be a non constant twice derivable function defined on R such that f(2 + x) = f(2 x) and $f'\left(\frac{1}{2}\right) = 0 = f'(1)$. Then which of the following alternative(s) is/are correct?
 - (A) f(-4) = f(8).
 - (B) Minimum number of roots of the equation f''(x) = 0 in (0, 4) are 4.
 - (C) $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} f(2+x) \sin x \, dx = 0.$
 - (D) $\int\limits_{0}^{2} f(t) 5^{\cos \pi t} \; dt = \int\limits_{2}^{4} f(4-t) 5^{\cos \pi t} \; dt \; .$
- 14. If $\lim_{x\to a} f(x) = \lim_{x\to a} [f(x)]$ ($a\in R$), where $[\cdot]$ denotes greatest integer function and f(x) is a non constant continuous function, then
 - (A) $\lim_{x\to a} f(x)$ is an integer.

- (B) $\lim_{x\to a} f(x)$ is non integer.
- (C) f(x) has a local minimum at x = a.
- (D) f(x) has a local maximum at x = a.

15. If graph of y = f'(x) is



then which of the following can be true for y = f(x)

- (A) point of inflection at x = 1 and x = 2
- (B) concave down in $(-\infty,1) \cup (2,\infty)$
- (C) point of local maxima at x = 3
- (D) decreasing in interval $(3,\infty)$
- **16.** Let $g(x) = f(\tan x) + f(\cot x) \forall x \in \left(\frac{\pi}{2}, \pi\right)$. If $f''(x) < 0 \forall x \in \left(\frac{\pi}{2}, \pi\right)$, then
 - (A) g(x) is increasing in $\left(\frac{\pi}{2}, \frac{3\pi}{4}\right)$
- (B) g(x) is increasing in $\left(\frac{3\pi}{4},\pi\right)$
- (C) g(x) is decreasing in $\left(\frac{3\pi}{4},\pi\right)$
- (D) g(x) has local maximum at $x = \frac{3\pi}{4}$

Comprehension Type Question:

Comprehension # 1

Consider f, g and h be three real valued differentiable functions defined on R. Let $g(x) = x^3 + g''(1)$ $x^2 + (3g'(1) - g''(1) - 1) x + 3g'(1)$, f(x) = x g(x) - 12x + 1 and $f(x) = (h(x))^2$ where h(0) = 1.

- **17.** The function y = f(x) has
 - (A) Exactly one local minima and no local maxima
 - (B) Exactly one local maxima and no local minima
 - (C) Exactly one local maxima and two local minima
 - (D) Exactly two local maxima and one local minima
- **18.** Which of the following is/are true for the function y = g(x)?
 - (A) g(x) monotonically decreases in $\left(-\infty,2-\frac{1}{\sqrt{3}}\right)\cup\left(2+\frac{1}{\sqrt{3}},\infty\right)$
 - (B) g(x) monotonically increases in $\left(2 \frac{1}{\sqrt{3}}, 2 + \frac{1}{\sqrt{3}}\right)$
 - (C) There exists exactly one tangent to y = g(x) which is parallel to the chord joining the points (1, g(1)) and (3, g(3))
 - (D) There exists exactly two distinct Lagrange's mean value in (0, 4) for the function y = g(x).
- **19.** Which one of the following does not hold good for y = h(x)?
 - (A) Exactly one critical point
 - (B) No point of inflection
 - (C) Exactly one real zero in (0, 3)
 - (D) Exactly one tangent parallel to x-axis

Comprehension # 2

$$\text{Consider f(x)} = \begin{bmatrix} |-x^2 - x| + \lambda; & x \leq 0 \\ \lim_{n \to \infty} \frac{x^n - x^{-n}}{x^n + x^{-n}} + k; & 0 < x < 1 & n \in N, k \in R \\ b & ; & x = 1 \\ sgn(\ell n(e^x + e^{-x} + 1)); & x > 1 \end{bmatrix}$$

- **20.** The value of $k + b + \lambda$ so that f(x) is continuous in R is
 - (A)3

- (B) 2
- (C) 4
- (D) 1
- 21. Number of point(s) where continuous function f(x) is non differentiable, is
 - (A) 0

- (B) 1
- (C)2
- (D) 3
- 22. If f(x) is continuous then set of values of x for which f'(x) is decreasing, is
 - (A) $(-\infty, -1)$
- (B) (-1, 0)
- (C)(0,1)
- (D) (-1, 1)

Comprehension #3

A function f(x) having the following properties;

- (i) f(x) is continuous except at x = 3
- (ii) f(x) is differentiable except at x = -2 and x = 3

(iii)
$$f(0) = 0$$
, $\lim_{x \to 3} f(x) \to -\infty$, $\lim_{x \to -\infty} f(x) = 3$, $\lim_{x \to \infty} f(x) = 0$

(iv)
$$f'(x) > 0 \ \forall \ x \in (-\infty, -2) \cup (3, \infty) \ \text{and} \ f'(x) \le 0 \ \forall \ x \in (-2, 3)$$

(v)
$$f''(x) > 0 \ \forall \ x \in (-\infty, -2) \cup (-2, 0) \ \text{and} \ f''(x) < 0 \ \forall \ x \in (0, 3) \cup (3, \infty)$$

then answer the following questions

- **23.** Maximum possible number of solutions of f(x) = |x| is
 - (A) 2

- (B) 1
- (C) 3
- (D) 4

- **24.** Graph of function y = f(-|x|) is
 - (A) differentiable for all x, if f'(0) = 0
 - (B) continuous but not differentiable at two points, if f'(0) = 0
 - (C) continuous but not differentiable at one points, if f'(0) = 0
 - (D) discontinuous at two points, if f'(0) = 0
- **25.** f(x) + 3x = 0 has five solutions if
 - (A) f(-2) > 6

(B) f'(0) < -3 and f(-2) > 6

(C) f'(0) > -3

(D) f'(0) > -3 and f(-2) > 6

Numerical based Questions:

- **26.** If $\ln 2\pi < \log_2(2+\sqrt{3}) < \ell n 3\pi$, then number of roots of the equation $4\cos(e^x) = 2^x + 2^{-x}$, is
- 27. Let f(x) = Max. $\{x^2, (1-x)^2, 2x(1-x)\}$ where $x \in [0, 1]$ If Rolle's theorem is applicable for f(x) on largest possible interval [a, b] then the value of 2(a + b + c) when $c \in (a, b)$ such that f'(c) = 0, is

28.
$$f(x) = \begin{cases} \left(\sqrt{2} + \sin\frac{1}{x}\right) e^{\frac{-1}{|x|}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Number of points where f (x) has local extrema when $x \neq 0$ be n_1 . n_2 be the value of global minimum of f (x) then $n_1 + n_2 =$

- **29.** f(x) is a polynomial of 6th degree and $f(x) = f(2-x) \ \forall \ x \in \mathbb{R}$. If f(x) = 0 has 4 distinct real roots and two real and equal roots then sum of roots of f(x) = 0
- 30. ABCD and PQRS are two variable rectangles, such that A,B,C and D lie on PQ,QR,RS and SP respectively and perimeter 'x' of ABCD is constant. If the maximum area of PQRS is 32, then $\frac{X}{A}$ =
- 31. Find number of distinct read roots of $x^4 4x^3 + 12x^2 + x 1 = 0$

Matrix Match Type:

32. Match the following:

Column-II Column-II

(A) If $x^2 + y^2 = 1$, then minimum value of x + y is (p)

(B) If maximum value of $y = a \cos x - \frac{1}{3} \cos 3x$ (q) $-\sqrt{2}$

occurs at $x = \frac{\pi}{6}$, then value of 'a' is

(C) If $f(x) = x - 2 \sin x$, $0 \le x \le 2\pi$ is increasing in the interval $(a\pi, b\pi)$ (r) 3 then a + b is

(D) If equation of tangent to the curve $y = -e^{-x/2}$ where it crosses the y-axsi is $\frac{x}{p} + \frac{y}{q} = 1$, then p-q is

(t) -2

(A) A-p; B-r; C-q; D-s

(B) A-q; B-s; C-s; D-r

(C) A-s; B-q; C-p; D-r

(D) A-r; B-p; C-q; D-r

Subjective based Questions:

- 33. Find the possible values of a such that the inequality $3 x^2 > |x a|$ has at least one negative solution
- **34.** A cone is made from a circular sheet of radius $\sqrt{3}$ by cutting out a sector and keeping the cut edges of the remaining piece together. Then find the maximum volume attainable for the cone
- 35. f(x) and g(x) are differentiable functions for $0 \le x \le 2$ such that f(0) = 5, g(0) = 0, f(2) = 8, g(2) = 1. Show that there exists a number c satisfying 0 < c < 2 and f'(c) = 3 g'(c).
- **36.** Find maximum value of function $g(x) = \frac{\log(\pi + x)}{\log(e + x)}$ $(0 \le x \le \pi e)$.