MATHEMATICS

TARGET: JEE- Advanced 2023

CAPS-11

CONTINUITY & DIFFERENEIABILITY

(D) $\frac{3}{2}$

SCQ (Single Correct Type):

(A) $\frac{3}{8}$

1.	The value of f(0) so	that the function f(v)	$\sqrt{a^2 - ax + x^2} - \sqrt{a^2 - ax + x^2}$	$\frac{a^2 + ax + x^2}{a - x}$ (a > 0) becomes
••	The value of 1(0), 30	that the function 1(x)	$\sqrt{a+x}-\sqrt{a}$	$\frac{1}{A-X}$ ($a > 0$) becomes
	continuous for all x, is given by -			
	(A) a√a	(B) √a	(C) −√a	(D) $-a\sqrt{a}$
2.	Let $f(x) = [\cos x + \sin x]$, $0 < x < 2\pi$, where [.] denotes G.I.F. The number of points of discontinuity of			
	f(x) is-			
	(A) 6	(B) 5	(C) 4	(D) 3
3.	The function $f(x) = \begin{cases} x^2 \left[\frac{1}{x^2} \right] &, & x \neq 0 \\ 0 &, & x = 0 \end{cases}$, is (where [.] denotes G.I.F.)			
	(A) Continuous at $x = 1$		(B) Continuous at $x = -$	1
	(C) Discontinuous at x =	= 0	(D) Continuous at $x = 2$	
4.	$f(x) = [x^2] + \sqrt{(x)^2}$, where [.] and {.} denote the greatest integer and fractional part functions			
	respectively, then-			
	 (A) f(x) is continuous at all integral points except 0 (B) f(x) is continuous and differentiable at x = 0 (C) f(x) is discontinuous for all x ∈ I − {1} 			
	(D) $f(x)$ is not differentiable for all $x \in I$.			
5.	If f(x) is a continuous function for all real values of x satisfying x^2 + (f(x) - 2)x + $2\sqrt{3}$ - $3 - \sqrt{3}$ f(x) = 0,			
	then the value of $f(\sqrt{3})$ is -			
	(A) √3	(B) $1 - \sqrt{3}$	(C) $2(1-\sqrt{3})$	(D) $2(\sqrt{3} - 1)$
6.	If $g(x)$ is a polynomial satisfying $g(x)g(y) = g(x) + g(y) + g(xy) - 2$ for all real x and y and $g(2) = g(x) + g(x) +$			
	5, then $\lim_{x\to 3} g(x)$ is			
	(A) 9	(B) 25	(C) 10	(D) none of these
7.	A differentiable function $f: \mathbb{R} \to \mathbb{R}$ satisfies $f(xy) = f(x) + f(y) \ \forall \ x, \ y \in \mathbb{R}^+$. If $f(16) = 3$, then the			
	value of f(2) is			

(C) $\sqrt{3}$

(B) $\frac{3}{4}$

- Let f(x), $f: \mathbb{R} \to \mathbb{R}$ be a non-constant continuous function such that $f(2x) = (e^x + 1) f(x)$, the value 8.
- $\text{(A) } \lim_{h \to 0} \frac{f(h)}{e^h + 1} \qquad \qquad \text{(B) } \lim_{h \to 0} \frac{f(h)}{e^h 1} \qquad \qquad \text{(C) } \lim_{h \to 0} \frac{f(h)}{e^h h 1} \qquad \qquad \text{(D) } \lim_{h \to 0} \frac{f(h)}{e^{-h} 1}$
- If f(x) be positive, continuous and differentiable on the interval (a, b). If $\lim_{x \to a} f(x) = 1$ and 9.

 $\lim_{x \to h^{-}} f(x) = 3^{\frac{1}{4}} \text{ also } f'(x) > (f(x))^{3} + \frac{1}{f(x)} \text{ then } \underline{\hspace{1cm}}.$

- (A) $b-a > \frac{\pi}{24}$ (B) $b-a < \frac{\pi}{24}$ (C) $b-a = \frac{\pi}{12}$ (D) $b-a = \frac{\pi}{24}$

- 10. If $f(x) = sgn (sin^2x - sin x - 1)$ has exactly four points of discontinuity for $x \in (0, n\pi)$ $n \in \mathbb{N}$ then n can be
 - (A) only 4
- (B) 4 or 5
- (C) only 5

(D) 5 or 6

MCQ (One or more than one correct):

- Suppose that f(x) is a differentiable invertible function with $f'(x) \neq 0$ and $h(x) = \int_{0}^{x} f(t) dx$. Given 11. that f(1) = f'(1) = 1 and g(x) is inverse of f(x). Let $G(x) = x^2g(x) - xh(g(x)) \ \forall x \in \mathbb{R}$. Which of the following are correct?
 - (A) G'(1) = 2
- (B) G'(1) = 3

- consider the function $f(x) = \begin{cases} \int_0^x (4+|t-2|) dt, & x > 3 \\ ax^2 + bx & x \le 3 \end{cases}$. If f(x) is differentiable at x = 3, then _____. 12.
 - (A) $a+b=\frac{83}{18}$ (B) $a+b=\frac{85}{18}$ (C) $ab=\frac{7}{27}$

- If $f(x) = |x^2 4|x| + 3|$ then _____ 13.
 - (A) f(x) is non-differentiable at 5 points
- (B) f(x) is non-differentiable at 4 points
- (C) f(x) has local maxima at x = 0
- (D) f(x) has local minima at x = -1
- If $f(x) = \begin{cases} a + \frac{\sin^3[x]}{x} & x > 0 \\ 3, & x = 0 \\ 2b + \left\lceil \frac{\sin x x}{x^3} \right\rceil & x < 0 \end{cases}$ and f(x) is continuous at x = 0, then 14.
 - (A) a = 2
- (B) a = 3

- (C) b = 2
- (D) b = 3
- If $f(x) = -1 + |x-2|, 0 \le x \le 4$ and $g(x) = 2 |x|, -1 \le x \le 3$ then (fog) (x) is _____. 15.
 - (A) Discontinuous at x = 0

- (B) Continuous at x = 0
- (C) Not differentiable at x = 0
- (D) Differentiable at x = 0

16. Suppose f is a function that satisfies the equation $f(x+y) = f(x) + f(y) + x^2y + xy^2$ for all real numbers x and y. If $\lim_{x\to 0} \frac{f(x)}{x} = 1$, Then _____.

(A)
$$f(x) > 0$$
 for $x > 0$ and $f(x) < 0$ for $x < 0$

(B)
$$f'(0) = 1$$

$$(C) f''(0) = 1$$

(D)
$$f'''(0) = 6$$

- 17. Let [x] denote the greatest integer less than or equal to x. If $f(x) = [x \sin \pi x]$, then f(x) is :
 - (A) continuous at x = 0

(B) continuous in (-1, 0)

(C) differentiable at x = 1

(D) differentiable in (-1, 1)

Numerical based Questions:

- 18. A function $f: \mathbb{R} \to \mathbb{R}$ satisfies sinx cos y $(f(2x + 2y) f(2x-2y)) = \cos x \sin y$ (f(2x+2y)+f(2x-2y)). If $f'(0)=\frac{1}{2}$, then the value of 4f''(x)+f(x) is _____
- 19. Let f(x) be a real valued function not identically zero such that $f(x + y^3) = f(x) + [f(y)]^3 \ \forall \ x, y \in R$ and $f'(0) \ge 0$, then find f(10)

20

23. If
$$g(x) = \begin{cases} \frac{1 - a^x + xa^x \cdot \ell na}{x^2 a^x}, & x < 0 \\ \frac{(2a)^x - x \ell n 2a - 1}{x^2}, & x > 0 \end{cases}$$

(where a > 0), then find 'a' and g(0) so that g(x) is continuous at x = 0.

- 24. If $f: R \to (-\pi, \pi)$ be a derivable function such that $f(x) + f(y) = f\left(\frac{x+y}{1-xy}\right)$, xy < 1.

 If $f(1) = \frac{\pi}{2}$ and $\lim_{x \to 0} \frac{f(x)}{x} = 2$, find f(x).
- 25. Given $f(x) = \cos^{-1}\left(sgn\left(\frac{2[x]}{3x-[x]}\right)\right)$, where sgn() denotes the signum function and [.] denotes the greatest integer function. Discuss the continuity and differentiability of f(x) at $x = \pm 1$.