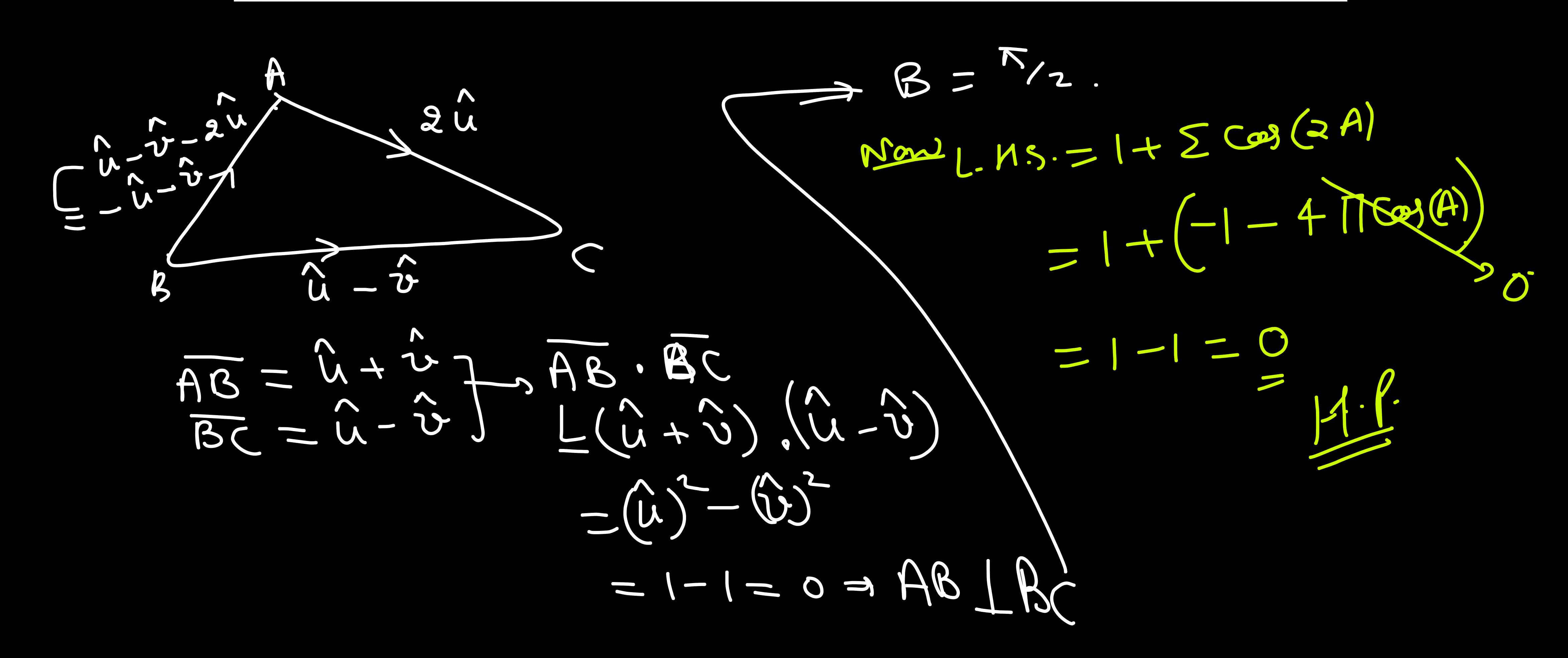
If in a triangle ABC,
$$\overrightarrow{BC} = \frac{\overrightarrow{u}}{|\overrightarrow{u}|} - \frac{\overrightarrow{v}}{|\overrightarrow{v}|}$$
 and $\overrightarrow{AC} = \frac{2\overrightarrow{u}}{|\overrightarrow{u}|}$ where $|\overrightarrow{u}| \neq |\overrightarrow{v}|$, then show that $1 + \cos 2A + \cos 2B + \cos 2C = 0$.



If \bar{u} and \bar{v} are two non-collinear unit vectors such that $|\hat{u} \times \hat{v}| = \left|\frac{\hat{u} - \hat{v}}{2}\right|$, find the value of

Four points P, A, B and C with position vectors as r, a,b and c respectively are in a plane such that

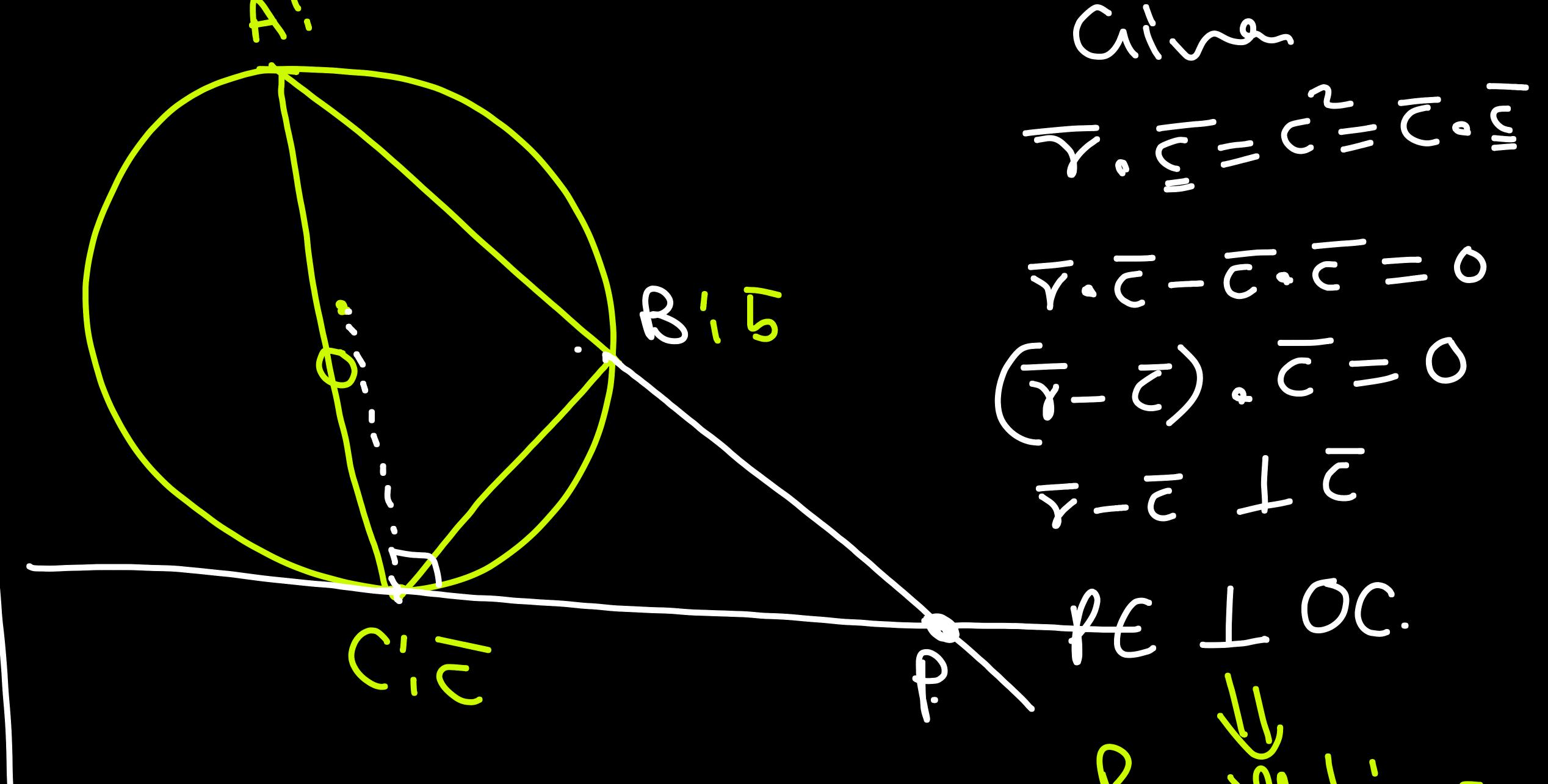
P, A, B are collinear and satisfy
$$|\overline{a}| = |\overline{b}| = |\overline{c}|$$
 and $\overline{r.c} = |\overline{c}|^2$. Prove that

$$\left|\overline{r} - \overline{a}\right| \left|\overline{r} - \overline{b}\right| = \left|\overline{r} - \overline{c}\right|^2$$
.

BIL PIT AIQ

P, A, B —, Collinson.

Origin is circumconhe RABC.



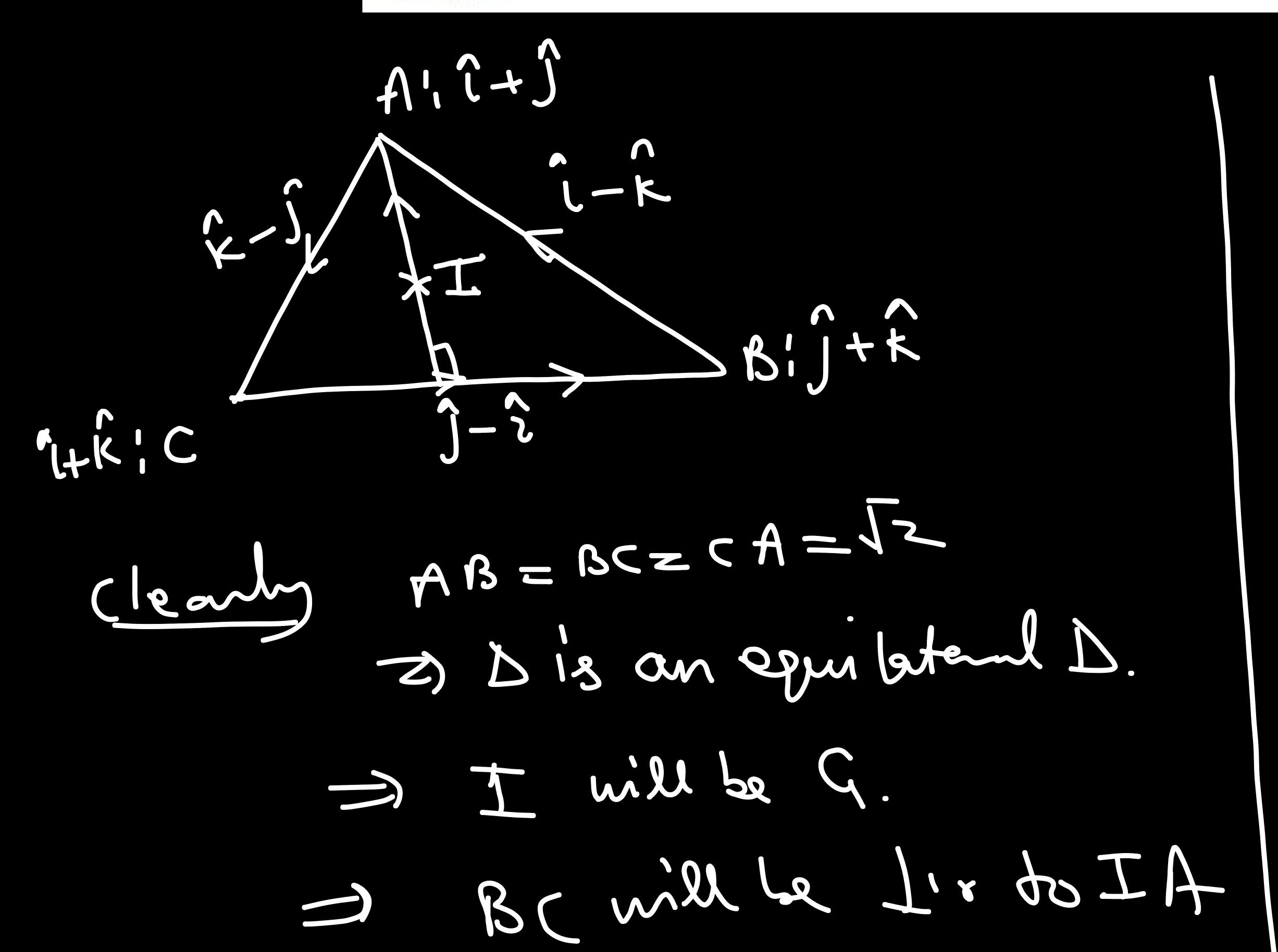
Final & tours of X' & ABO tangent at for C.

PA.1B=PC2=> |7-a|. | \(\bar{r}-\bar{b}|=|\bar{r}-\bar{c}\)
HP.

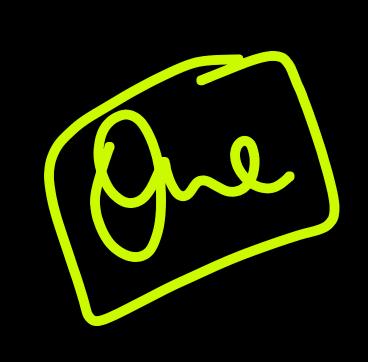
 \hat{w} is a unit vector perpendicular to the plane of two other unit vectors \hat{u} and \hat{v} . Three unit vectors \hat{x} , \hat{y} and \hat{z} are along the angle bisectors of \hat{u} , \hat{v} ; \hat{v} , \hat{w} and \hat{u} , \hat{w} respectively. If

= 2Cm (%)

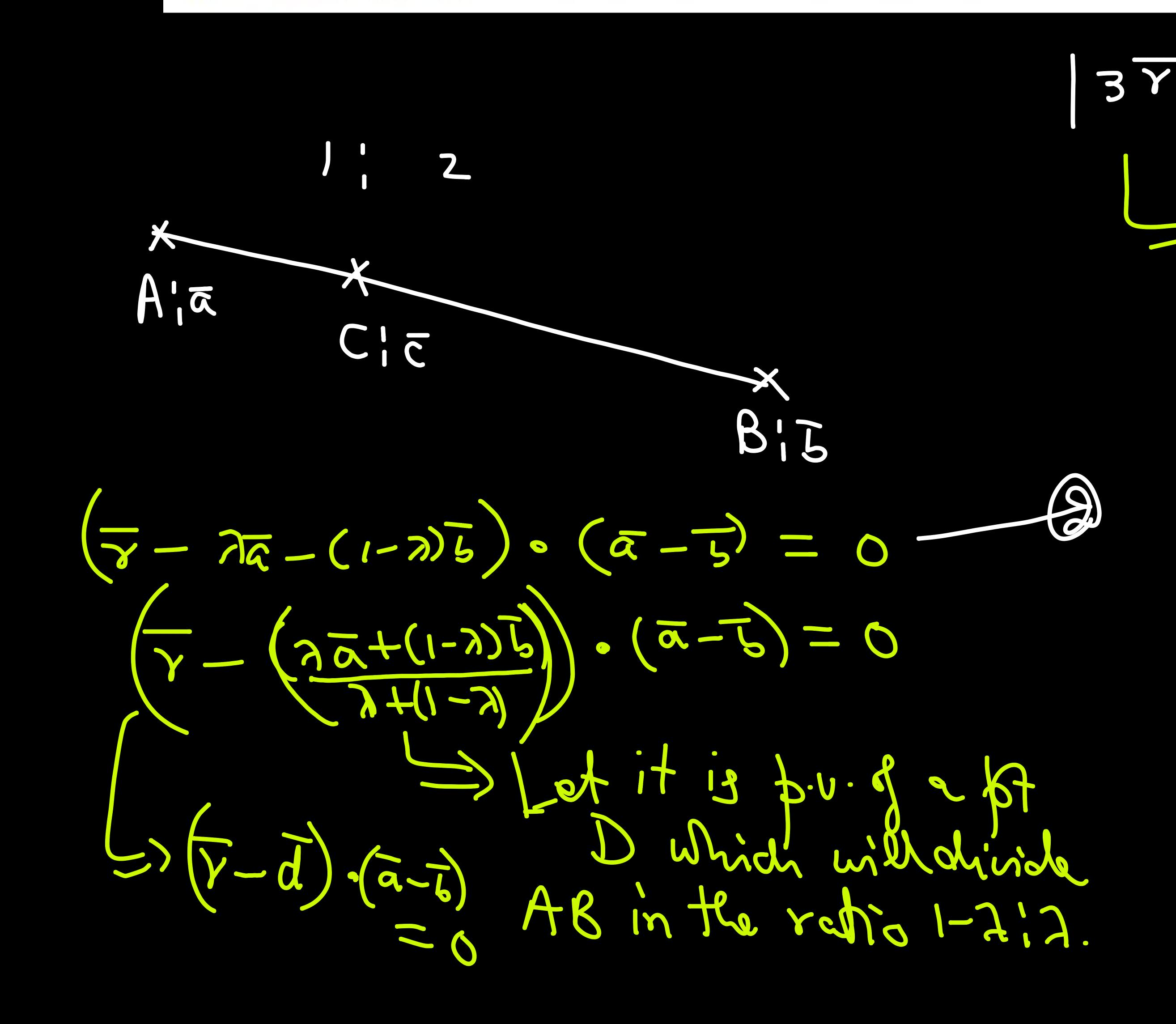
The position vectors of the vertices A, B and C of a triangle are $\hat{i} + \hat{j}$, $\hat{j} + \hat{k}$ and $\hat{i} + \hat{k}$ respectively. Find a unit vector \hat{r} lying in the plane of $\triangle ABC$ and perpendicular to IA, where I is the incentre of the triangle.



 \Rightarrow Regulard must vector $= \pm \frac{(j-1)}{Jz}$. As



A and B are two points in space with position vector \overline{a} and \overline{b} respectively. Find the value of λ such that the system of equation $|3\overline{r} - 2\overline{a} - \overline{b}| = |\overline{a} - \overline{b}|$ and $[\overline{r} - \lambda \overline{a} - (1 - \lambda)\overline{b}] \cdot (\overline{a} - \overline{b}) = 0$ does not have any solution.



137-20-5 - 0-5 Hintho Tatoli2. 3) I lies on a solume of

(T-d). (a-b) = 0 = BA? Frame bassing though Did and Senstion of Frame having normal ou AB. All the pots which subisfy (1) will lie on a Share 15 which satisfy @ will lie AIS has no solution than of egas Sphene must not intersect 7755

The position vectors of the vertices A, B, C of a triangle are \overline{a} , \overline{b} and \overline{c} respectively, where $\overline{c} = \overline{a} \times \overline{b}$ and \overline{a} and \overline{b} are non-collinear vectors. If \overline{d} , the position vector of the centroid of the triangle ABC, makes equal angles ' α ' with the vectors \overline{a} , \overline{b} and \overline{c} , then prove that

- (i) $|\bar{a}| = |\bar{b}|$.
- (ii) the value of α is $\cos^{-1} \frac{1}{\sqrt{3}}$ if $\overline{a}.\overline{b} = 0$.

Sh Aia, Bib & Cic= $\overline{\alpha} \times \overline{D}$ $\overline{A} = \frac{\overline{\alpha} + \overline{b} + \overline{\alpha} \times \overline{b}}{3}$

 $\bar{a} \cdot \bar{a} = d \propto cos(\alpha) = \frac{\alpha + \bar{\alpha} \cdot \bar{b}}{3}$

 $\overline{d} \cdot \overline{b} = \overline{d} \cdot b \cdot cos(\alpha) = \overline{a \cdot b + b} - \overline{a}$

 $d \cdot (axb) = d |axb| cos(x) = |axb|^{3}$

$$\frac{0}{3} \Rightarrow \frac{\alpha}{b} = \frac{\alpha^{2} + \overline{\alpha \cdot b}}{\overline{\alpha \cdot 5} + b^{2}}$$

$$= \frac{\alpha}{a} + \frac{\overline{\alpha \cdot b}}{\overline{\alpha \cdot 5} + b^{2}}$$

$$= \frac{\alpha}{a} + \frac{\alpha}{b} + \frac{\alpha}{b}$$

$$|\vec{A}| = \frac{1}{3} \int_{a^{2}+c^{2}+}^{a^{2}+c^{2}$$

$$\Rightarrow Cos(\alpha) = \frac{1}{13}$$

$$= \frac{1}{13}$$

$$= \frac{1}{13}$$

$$= \frac{1}{13}$$

$$= \frac{1}{13}$$

$$= \frac{1}{13}$$

If \bar{a} , b and \bar{c} are three mutually perpendicular unit vectors and \bar{d} is a vector such that \overline{a} , \overline{b} , \overline{c} and \overline{d} are non-coplanar. If \overline{d} \overline{b} \overline{c} = \overline{d} \overline{a} \overline{b} = \overline{d} \overline{c} \overline{a} = 1. Find \overline{d} in terms of \bar{a} , \bar{b} and \bar{c} .

$$\frac{det}{d} = \lambda_1 \overline{a} + \lambda_2 \overline{b} + \lambda_3 \overline{c}$$

$$\overline{b} \times \overline{c} = \lambda_1 \overline{a} + \lambda_2 \overline{b} + \lambda_3 \overline{c}$$

$$\sum_{i} J_{i} = \lambda_{i} \left[\sum_{i} J_{i} \right]$$

$$\frac{1}{d} = \frac{1}{(a + b + c)}$$

as ā, b, c are mutually Lix & & fill was treated to the second of the se mt veem $= \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} \right)$

Let \vec{a} , \vec{b} and \vec{c} be non-coplanar unit vectors, equally inclined to one another at an angle θ . If $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} = p\vec{a} + q\vec{b} + r\vec{c}$, find the scalars p, q and r in terms of θ .

She
$$\bar{a}$$
, \bar{b} , \bar{c} non-coplaner (a): $-\cos(\theta) + \sin^2(\theta) = \beta [\bar{a} \bar{b} \bar{c}]$

In this vectors

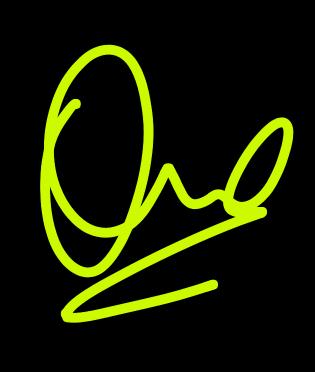
 $= \bar{c} \cdot \bar{c}$

with are another

 $= \cos(\theta)$
 $a^2 = b^2 = c^2 = 1$
 $\bar{a} \times \bar{b} + \bar{b} \times \bar{c} = \beta \bar{a} + 9 \bar{b} + 7 \bar{c}$
 $= \cos(\theta) \times \bar{c} \times \bar{c}$

$$\Rightarrow \beta = \frac{1 - \cos(\theta)}{\left[\frac{\pi}{6} \right]} = \gamma$$

$$Q = \frac{2 \cos(\theta) (1 - \cos(\theta))}{\left[\frac{\pi}{6} \right]} = \frac{1}{\left[\frac{\pi}{6} \right]} = \frac{1}{$$



Show that the perpendicular distance of a point A(a) from the line r = b + tc is

$$|\vec{b} + (\vec{a} - \vec{b})\vec{c}|\vec{c} - \vec{a}$$

$$|\vec{c}|^2$$

$$A N = |NA| = |\text{1-r component } f BA \text{ with } c|$$

$$A N = |A N = |\Delta - |A| = |\text{1-r component } f BA \text{ with } c|$$

$$= |(a - b) - |A| = |(a - b) \cdot c|$$

$$= |(a - b) - |(a - b) \cdot c|$$

$$= |(a - b) \cdot c|$$

$$= |a - b|$$

$$d = ABsin(9)$$

$$= 1(a-b)xc$$

$$|c|$$

 $d = AB \sin(0) = \frac{|(\overline{a} - \overline{b}) \times \overline{c}|}{|\overline{c}|} = \frac{|(\overline{a} - \overline{b}) \times \overline{c}| \times \overline{c}|}{|\overline{c}|}$ $= \frac{|(\overline{a} - \overline{b}) \cdot \overline{c}|}{|\overline{c}|} = \frac{|(\overline{a} - \overline{b}) \times \overline{c}| \times \overline{c}|}{|\overline{c}|}$

Let \hat{x} , \hat{y} and \hat{z} be unit vectors such that $\hat{x} + \hat{y} + \hat{z} = \vec{a}$, $\hat{x} \times (\hat{y} \times \hat{z}) = \vec{b}$, $(\hat{x} \times \hat{y}) \times \hat{z} = \vec{c}$ $\vec{a} \cdot \hat{x} = \frac{3}{2}$, $\vec{a} \cdot \hat{y} = \frac{7}{4}$ and $|\vec{a}| = 2$. Find \hat{x} , \hat{y} and \hat{z} in terms of \hat{a} , \hat{b} and \hat{c} .