## CHEMISTRY

**TARGET: JEE Advanced - 2021** 

CAPS - 6 GOC

## **Answer Key**

| 1.  | (B)                                             | 2.  | (B)    | 3.  | (A)   | 4.  | (B)  | 5.  | (B)   |
|-----|-------------------------------------------------|-----|--------|-----|-------|-----|------|-----|-------|
| 6.  | (C)                                             | 7.  | (D)    | 8.  | (D)   | 9.  | (B)  | 10. | (AB)  |
| 11. | (ABD)                                           | 12. | (BD)   | 13. | (ABD) | 14. | (BC) | 15. | (BCD) |
| 16. | (BCD)                                           | 17. | (D)    | 18. | (C)   | 19. | (B)  | 20. | (10)  |
| 21. | (2212)                                          | 22. | (5444) | 23. | (6)   | 24. | (7)  | 25. | (13)  |
| 26. | (A) R, T (B) P, S, T (C) Q, S, T (D) P,Q,R,S, T |     |        |     |       |     |      |     |       |
| 27. | (A) S (B) R (C) Q (D) P                         |     |        |     |       |     |      |     |       |

## Soution

1. r: pure double bond

x: Partial double bond character

q : Partial single bond character

y: CH<sub>3</sub> - NH<sub>2</sub> pure single bond

p : Partial double bond character

z: z and x are equal

2. (B)


3. Indicated bond is a double bond maximum delocalisation (by Resoance & Hyperconjugation) maximum single bond character hence minimum rotationla Energy barrier.

Rotational Energy barrier  $\alpha$  Bond Strength



\* High delocalisation

\* Higher single bond character



\* Moderate delocalisation



Hyper conjugating



3 Hyper conjugating structure

\* Less single bond character

3° (Allylic) 4. More E<sub>N</sub> carbon (Allylic)



5.

ф Сн-сн,





- 6. (C)
- 7. More resonance More single bond character less rotational energy is required.
- is more stable due to more number of  $\alpha$ -hydrogen [number of  $\alpha$ -hydrogen = 7] 8.
- 9. This is cis - isomer, having 4  $\alpha$ -hydrogen.

- 11. (A) H is more acidic than  $CH_2=CH-CH_2-CH=CH_2$  due to more stablization of –ve charge in conjugate base.
  - (B)  $\stackrel{NC}{\underset{H}{\bigcup}} \stackrel{CN}{\underset{H}{\bigcup}}$  is more acidic than  $\stackrel{CN}{\underset{H}{\bigcup}}$  due to more stablization of -ve charge in

conjugate base.

- (D)  $_{\rm HO}^{\rm OOH}$  is more acidic than  $_{\rm HO}^{\rm OOH}$  due to more stablization of -ve charge in conjugate base.
- 12. (A)  $\longleftrightarrow$  R.S. having same R.E.
  - (B) extended cross conjugation
  - (C)  $\longleftrightarrow$  R.S. having same R.E.
  - (D) O > O

extended cross

- 13. (A) CH<sub>3</sub> (Basic order)

  COOH COOH

  (B) CH<sub>3</sub> (SIR) (Acidic order)
  - (C) HC ≡ CH > NH<sub>3</sub> (Acidic order)

    sp hybrid carbon

    more elctronegative

Non equivalent R.S.

- 14. (A) chain isomers.
  - (C) They have same R.E.

(B) They are functional isomers not tautomers.

(A) 
$$COOH$$
  $COOH$   $COOH$   $COOH$   $COOH$   $CH_3$ 

$$COOH$$
  $OH$   $CH_2$ -I

Carboxylic acid Phenol Benzylic H

Carboxylic acid Phenol Alcohol

16. (B)

HoC ∞ no. of carbon

Resonance energy ∞ delocalisation / Conjugation

simple < cross < exterted

Boricity ∞ e<sup>-</sup> density of N-atom

- 17. Based on stability of anion.
- 18. Chiral centre = 9
- 19. Based on stability of free radical.

20.

21. (a)  $H_2O$  is stronger acid than  $MeC \equiv CH$ 

keq < 1 Backward Direction (2)

(b) H<sub>2</sub>CO<sub>3</sub> is stronger acid than PhOH

keq < 1 Backward Direction (2)

(c) EtCOOH is stronger acid than NH<sub>3</sub>

keq > 1 Forward direction (1)

(d) H<sub>2</sub>O is stronger acid than OH

keq < 1 Backward direction (2)

22. Naphthalene is 10  $\pi$  e's system

i.e. there are 5  $\pi$  bonds

Expected (theoretical) heat of hydrogen =  $-28.6 \times 5 = -143$  kCal/mol Observed (experimental) heat of hydrogen = -89

 $\therefore$  R.E. = -89 - (-143)= 54 kCal / mol

23. (6)

24. (7)

25. (13)

26. (A) R, T (B) P, S, T (C) Q, S, T (D) P,Q,R,S, T

27. More the  $\pi$  bond more will be the HOH .Order of heat of hydrogenation  $\alpha \frac{1}{\text{stability}}$ 

## Power of real gurus