CHEMISTRY

CAPS – 5
Chemical Equilibrium

TARGET: JEE Advanced - 2021

a Juna & winen Gayminth

Answer Key

(A) 2. (C) 3. (C) 4. (A) 1. 5. (B) 6. (D) 7. (A) 8. (D) 9. (D) 10. (C) 11. (BC) 12. (ABC) 13. (ABD) 14. (CD) 15. (CD)

(AC) 17. (ACD) 20. 16. (AB) 18. 19. (C) (D) $(A \rightarrow Q; B \rightarrow P; C \rightarrow R; D \rightarrow S)$ 22. (B) 21. 23. (A) 24.

25. $(K_{p_1} = \frac{1}{20P_0^2}, K_{P_2} = \frac{3}{20P_0^2})$

26.

27.

1.

2.

((i) $k_C = 189.574 \text{ mol}^{-2} \text{ lit}^2$, $k_P = 0.05 \text{ atm}^{-2}$ (ii) P = 12.4408 atm)

 (708.3 M^{-1}) **28.** (Ne)

Solution

Formation of NH₃ through Haber's Process is an exothermic change so on increasing the temperature concentration of NH₃ obtained at equilibrium will decrease.

Given that $Br_{2(l)} + Cl_{2(g)} \rightleftharpoons 2BrCl_{(g)}$; $K_P = 1$ atm

∴Initially 0 1 0

at equilibrium (1-x) 2x

: $K_P = \frac{[P_{BrCl}]^2}{[P_{Cl_2}]} = 1 \text{ & } P_{BrCl} = 0.1 \text{ atm}$

 $\therefore P_{Cl_2} = 0.01 \text{ atm}$

Now in a closed container V = constant & at constant T; $P \propto n$

 $\therefore \frac{P_{BrCl}}{P_{Cl_2}} = \frac{n_{BrCl}}{n_{Cl_2}} \text{ or } \frac{0.1}{0.01} = \frac{2x}{1-x}$ $X = \frac{5}{6}$

So, moles of BrCl = $2x = \frac{10}{6}$

Since the vapour pressure of Br_2 is same as the partial pressure of BrCl, the moles of bromine in vapour phase will be equal to the moles of BrCl.

Moles of Cl_2 used up = $\frac{5}{6}$

 \therefore Moles of Br₂ required = moles of BrCl formed + moles of Cl₂ used = $\frac{15}{6}$

3. Where the stopcock is opened then the total volume of the vessel becomes = 4 lt

Now,

$$\mathbf{3}_2$$

2AB

 \rightleftharpoons

at t = 0
$$\frac{2}{4}$$

$$\frac{2}{4}$$

$$\frac{4}{4}$$

at
$$t = t_{eq}$$
 $\frac{2-x}{4}$

$$\frac{4-3}{4}$$

$$\frac{2x}{4}$$

$$K_{C} = \frac{\left[AB\right]^{2}}{\left[A_{2}\right]\left[B_{2}\right]} = \frac{\left[\frac{2x}{4}\right]^{2}}{\left[\frac{2-x}{4}\right]\left[\frac{4-x}{4}\right]} = 4$$

$$\frac{4x^2}{(2-x)(4-x)} = 4$$

or
$$x = \frac{4}{3}$$

4.

5.

$$C(g)$$
 + $D(g)$

at
$$t = 0$$

 $[AB]_{\text{at equilibrium}} = \frac{2x}{4} = \frac{2\left(\frac{4}{3}\right)}{4} = 0.66.$

$$7 + x$$

$$3 + x$$

Given that
$$K_C = 10^{12} = \frac{[C][D]}{[A]^2[B]} = \frac{(7+x)(3+x)}{(2-2x)^2(1-x)}$$

$$x = 0.9998$$

:.
$$[A]_{\text{equilibrium}} = 2 - 2x = 2 - 2 (0.9998) \approx 4 \times 10^{-4}$$

$$O_2(g)$$

Mole at
$$t = 0$$

KMnO₄/H⁺ used reacts with SO₂ only.

No. of equivalents of KMnO₄ used = $0.2 \times 5 = 1$

So, no. of equivalents of $SO_2 = 1 = n \times n_f$

$$n = \frac{1}{2} = 0.5$$

Hence no. of moles of SO_2 at equilibrium = 0.5

$$2x = 0.5 \Rightarrow x = \frac{1}{4}$$

At equilibrium

$$[SO_3] = 1 - \frac{1}{2} = \frac{1}{2} [SO_2] = \frac{1}{2} [O_2] = \frac{1}{4}$$

$$K_{C} = \frac{\left(\frac{1}{4}\right)\left(\frac{1}{2}\right)^{2}}{\left(\frac{1}{2}\right)^{2}} = 0.25$$

6. Pure T₂O at 298 K

$$T_2O \rightleftharpoons T^+ + OT - 10^{-7.62}$$
 $10^{-7.62}$

Total volume = 25 ml

$$[OT^{-}] = \frac{1.75}{25} = 0.07$$

 $P^{OT} = 2 - \log 7$

$$P^{(1)} = 2 - \log 7$$

$$P^T = 15.24 - (2 - \log 7)$$

$$= 13.24 + \log 7$$

- 7. Physical adsorption is an exothermic process, i.e., change in enthalpy is -ve. Thus, H decreases as reaction progresses.
- 8. Lyophilic sols are reversible sols. Few examples include organic substances like starch in suitable solvents. They are neutral and thus cannot be readily coagulated and thus they are self-stabilized.
- 9. Below CMC, salt behave as normal electrolyte.
- 10. Number of sodium lauryl sulphate molecules (CH₃(CH₂)11SO₄-Na⁺) in 1 litre solution

$$= 10^{-3} \times 6 \times 10^{23}$$

$$= 6 \times 10^{20}$$

No. of sodium lauryl sulphate molecules per mm³ = 6×1014

Number of colloidal particles per mm³ = 10¹³

Number of molecules per colloidal particle

$$= \frac{6 \times 10^{14}}{10^{13}} = 60$$

- 11. A catalyst provides a different pathway, i.e., mechanism to the reaction, with less activation energy.
- 12. Fact based.
- 13. For this reaction

$${
m N_{2}}_{
m (g)}$$
 + ${
m 3H_{2}}_{
m (g)}$ $ightleftharpoons$ 2NH $_{
m 3(g)}$ $\Delta{
m H}$ = -22.4 Kcal

$$\Delta n = -ve$$

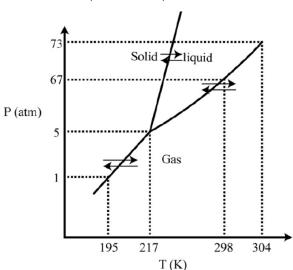
When an inert gas like He is added to the above equilibrium at constant temperature and pressure then to maintain a constant temperature and pressure then to maintain a constant pressure condition the volume of the system must increase. Because of this, the concentration of all species involved in the reaction immediately decreases. The reaction then tries to re achieve equilibrium by shifting in the backward direction which would increase the amount of N_2 & H_2 and decrease the amount of NH_3 .

$$AB_2$$
 + B_2C \rightleftharpoons AB_3 + BC

$$1 - x$$

$$1 - x - y$$

$$B_2C$$


$$B_3C_2$$

Since x > y

$$\therefore$$
 [AB₃]_{equm} > [BC]_{equm}

$$[AB_3]_{equm} > [B_3C_2]_{equm}$$

15.

- At temp. above 195 K we final CO₂ to have gaseous phase.
- Both m.pt. and B.pt. of CO₂ increases with pressure.

$$\begin{aligned} &A_{(g)} \rightleftharpoons B_{(g)}; K_1 = ? \\ &B_{(g)} \rightleftharpoons C_{(g)}; K_2 = 0.4 \\ &C_{(g)} \rightleftharpoons A_{(g)}; K_3 = 0.6 \end{aligned} K_1 = \frac{1}{K_1 \times K_2} = \frac{1}{0.24}$$

$$C_{(g)} \rightleftharpoons A_{(g)}; K_3 = 0.6$$

$$A \\
1-x$$

$$A \\
x$$

$$X$$

$$Y$$

$$X$$

$$Y$$

$$Y$$

$$\therefore \quad [A] = 1 - x - y$$

$$[B] = x$$

$$[C] = y$$

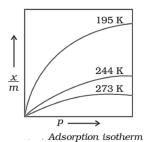
So,
$$[A] + [B] + [C] = 1$$

or $x = 10$ Wer of real gurus

or
$$\frac{x}{1-x} = \frac{1}{0.24}$$

or,
$$1.24x = 1$$

$$x = 0.8$$


and
$$\frac{y}{1-x-y} = \frac{1}{0.6}$$

or
$$1.6y = 1 - x$$

or
$$1.6y = 0.2$$

$$y = 0.125$$

17. When excess of AgNO₃ is added, Ag⁺ will get adsorbed onto AgI giving it a positive charge. The effect of pressure on physical adsorption is high if temperature is low. It is clear from the graph -

- 18. Low temperature is favorable for physical adsorption. Chemical adsorption requires activation energy.
- 19. (Q. 19, 20)

$$2A_2 \rightleftharpoons A_4$$

Initial Зр

At eqm.
$$3p - x - y$$
 $\frac{x}{2}$

$$A2 + 2C \rightleftharpoons A_2C_2$$

Initial 3p p —
At eqm.
$$3p - x - y$$
 $p - 2y$ $y -$

$$A_2C_2 \rightleftharpoons 2AC$$

According to the question,

$$P_{A_4} = \frac{1}{2} \Rightarrow \frac{x}{2} = \frac{1}{2} \Rightarrow x = 1$$

$$P_{Ac} = \frac{1}{2} \Rightarrow 2a = \frac{1}{2} \Rightarrow a = \frac{1}{4}$$

Now,
$$K_{P_1} = \frac{2}{81} \Rightarrow \frac{P_{A_4}}{(P_{A_2})^2} = \frac{2}{81}$$

$$\Rightarrow \frac{1}{2(P_{A_2})^2} = \frac{2}{81} \Rightarrow P_{A_2} = \frac{9}{2}$$
Thus, $3p - x - y = \frac{9}{2}$

Thus,
$$3p - x - y = \frac{9}{2}$$

or
$$3p-1-y=\frac{9}{2}$$

$$\Rightarrow 3p - y = \frac{11}{2} \dots (1)$$

Also,

$$P_{A_2} + P_{A_4} + P_C + P_{A_2C_2} + P_{AC} = \frac{27}{4}$$

$$\Rightarrow \frac{9}{2} + \frac{1}{2} + p - 2y + y - \frac{1}{4} + \frac{1}{2} = \frac{27}{4}$$

$$\Rightarrow \qquad \left(\frac{11}{2} - \frac{1}{4}\right) + p - y = \frac{27}{4}$$

$$\Rightarrow \qquad \frac{21}{4} + p - y = \frac{27}{4}$$

$$\Rightarrow \qquad p-y=\frac{6}{4}=\frac{3}{2} \quad(2)$$

Substituting value of y in eq. (1),

$$3p - \left(p - \frac{3}{2}\right) = \frac{11}{2}$$

$$\Rightarrow \qquad 2p + \frac{3}{2} = \frac{11}{2}$$

$$\Rightarrow \qquad 2p = \frac{11}{2} - \frac{3}{2}$$

$$\Rightarrow$$
 2p = 4 \Rightarrow p = 2

and
$$p = y = \frac{3}{2}$$

$$2-y=\frac{3}{2}$$

$$\Rightarrow$$
 $y = \frac{1}{2}$

Thus,
$$P_{A_2C_2} = y - a = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$$

And
$$\frac{n_{A_2}}{n_{AC}} = \frac{P_{A_2}}{P_{AC}} = \frac{\frac{9}{2}}{\frac{1}{2}} = 9$$

21.
$$SnCl_2.6H_2O(s) \Rightarrow SnCl_2.2H_2O(s) + 4H_2O(g)$$

$$KP = (P_{H_2O})^4$$

$$\Rightarrow$$
 $P_{H_2O} = \sqrt[4]{5 \times 10^{-12}} \approx 1.5 \times 10^{-3} \text{ atm}$

 $Na_2HPO_4.12H_2O(s) \rightleftharpoons Na_2HPO_4.7H_2O(s) + 5H_2O(g)$

$$K_p = \left(P_{H_2O}\right)^5$$

$$\Rightarrow P_{H_2O} = \sqrt[5]{243 \times 10^{-15}}$$
 erofreal gurus

$$\Rightarrow$$
 $P_{H_2O} = 3 \times 10^{-3} atm$

 $Na_2SO_4 + 10H_2O(s) \rightleftharpoons Na_2SO_4(s) + 10H_2O(g)$

$$K_{P} = \left(P_{H_{2}O}\right)^{10}$$

$$\Rightarrow$$
 $P_{H,O} = \sqrt[10]{1024 \times 10^{-30}}$

$$\Rightarrow$$
 $P_{H_2O} = 2 \times 10^{-3} atm$

Since the vapour pressure of water will decrease to the minimum value in case of SnCl₂.2H₂O, it will be the best drying agent at 0°C.

22. At equilibrium, relative humidity in Na₂SO₄. 10H₂O(s) is,

relative humidity =
$$\frac{PP_{H_2O}}{VP_{H_2O}} \times 100$$

$$=\frac{2\times10^{-3}\times760}{4.56}\times100=33.33\%$$

Now, if relative humidity is less than 33.33% reaction will occur in forward direction as $(Q_P < K_P)$. This will lead to release of moisture.

- 23. As discussed in Q.23, the R.H at equilibrium in Na₂SO₄.10H₂O is 33.33 %. For the substance to show deliquescent behavior, the reaction should occur in backward direction, i.e., QP > KP. Thus, R.H. should be more than 33.33%.
- 24. Fact

25.
$$K_{p_1} = \frac{1}{20P_0^2}, K_{p_2} = \frac{3}{20P_0^2}$$

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

eqm.
$$9x - a - b$$

$$N_2(g) + 2H_2(g) \rightleftharpoons N_2H_4(g)$$

9x

$$9x - a - b$$
 $13x - 3a - 2b$

Now,
$$P_{NH_2} = 2a = P_0 \Rightarrow a = \frac{P_0}{2}$$

Ans,
$$13x - 3a - 2b = 2P_0$$

$$\Rightarrow 13x - 2b = 2P_0 + \frac{3P_0}{2}$$

$$13x - 2b = \frac{1P_0}{2}$$

And
$$P_{N_2} + P_{H_2} + P_{NH_3} + P_{N_5H_4} = 7P_0$$

$$\Rightarrow 9x - a - b - 2P_0 + P_0 + b = 7P_0$$

$$\Rightarrow$$
 9x - a = 4P₀

$$\Rightarrow$$
 9x = 4P₀ + a

$$\Rightarrow 9x = 4P_0 + \frac{P_0}{2}$$

$$\Rightarrow$$
 $9x = \frac{9P_0}{2}$

$$\Rightarrow$$
 $x = \frac{P_0}{2}$

Substituting in eq. (1),

$$\frac{13P_{\text{O}}}{2}-2b=\frac{7P_{\text{O}}}{2}$$

$$\Rightarrow$$
 3P₀ = 2b

$$\Rightarrow \qquad b = \frac{3P_0}{2}$$

Thus,
$$K_{P_1} = \frac{\left(P_{NH_3}\right)^2}{\left(P_{N_2}\right)\left(P_{H_2}\right)^3} = \frac{{P_{_{\!O}}}^2}{\left(\frac{5P_{_{\!O}}}{2}\right)\!(2P_{_{\!O}})^3}$$

$$\Rightarrow$$
 $K_{P_1} = \frac{1}{20P_0^2}$

$$K_{P_{2}} = \frac{\left(P_{N_{2}H_{4}}\right)}{\left(P_{N_{2}}\right)\!\!\left(P_{H_{2}}\right)^{\!2}} = \frac{\left(\frac{3P_{O}}{2}\right)}{\left(\frac{5P_{O}}{2}\right)\!\!\left(2P_{O}\right)^{\!2}} = \frac{3}{20P_{O}^{2}}$$

26.
$$(P_{CO})_{initial} = \frac{nRT}{V} = \frac{0.15 \times 0.0821 \times 750}{2.5} = 3.6945 atm$$

$$\left(P_{\text{CH}_3\text{OH}}\right)_{\text{at eqm}} = \frac{nRT}{V} = \frac{0.08 \times 0.0821 \times 750}{2.5} = 1.9704 \, atm$$

Thus,

$$CO + 2H_2 \rightleftharpoons CH_3OH$$

Here, y = 1.9704 (as calculated above)

and,
$$P_T = 3.6945 - y + x - 2y + y$$

$$\Rightarrow$$
 8.5 = 3.6945 + x -3.9408

$$\Rightarrow$$
 8.5 = x - 0.2463

$$\Rightarrow$$
 x = 8.7463

Thus,
$$(P_{CO})_{at eqm} = 3.6945-1.9704=1.7241$$
 atm

$$(P_{H_2})_{at \text{ eqm}} = x - 2y = 8.7463 - 2 \times 1.9704 = 4.8055 \text{ atm}$$

Thus,
$$K_P = \frac{P_{CH_3OH}}{\left(P_{H_2}\right)^2 \left(P_{CO}\right)} = \frac{1.9704}{(4.8655)^2 (1.7241)}$$

$$\Rightarrow$$
 $K_P = 0.05 \text{ atm}^{-2} / \text{er of real gurus}$

Now,
$$K_P = K_C(RT)^{\Delta ng}$$

$$\Rightarrow$$
 0.05 = KCI(0.0821 × 750)⁻²

$$\Rightarrow$$
 K_C = 0.05(0.0821 × 750)²

$$\Rightarrow$$
 K_C = 189.575 M⁻²

(ii) If no reaction takes place, total pressure will be the sum of initial pressure of CO and H₂,

$$P_T = 3.6945 + x$$

Thus,

$$\left[I_2\right]_{\text{eqm}} = \frac{0.33}{254}$$

$$\left[I^{-}\right]_{\text{eqm}} = 0.1 - \frac{12.17}{254} = \frac{13.23}{254}$$

$$\left[I_3^-\right]_{eqm} = \frac{12.17}{254}$$

Thus,
$$K_{C} = \frac{\begin{bmatrix} I_{3}^{-} \end{bmatrix}}{\begin{bmatrix} I_{2} \end{bmatrix} \begin{bmatrix} \Gamma^{-} \end{bmatrix}}$$
$$= \frac{\frac{12.17}{254}}{\frac{0.33}{254} \times \frac{13.23}{254}}$$

 $K_C = 708.03 \text{ M}^{-1}$

On adding water (volume increases), the equilibrium will shift in backward direction.

28. Ne, because of greater Van der Waal's forces of attraction in Ne than that of He.

