CHEMISTRY

TARGET: JEE Advanced - 2021

CAPS - 20

Thermodynamics

Answer Key									
1.	(C)	2.	(C)	3.	(B)	4.	(B)	5.	(A)
6.	(D)	7.	(C)	8.	(D)	9.	(D)	10.	(A)
11.	(B)	12.	(A)	13.	(ACD)	14.	(BCD)	15.	(AC)
16.	(C)	17.	(A)	18.	(D)	19.	(C)	20.	(D)
21.	(A)	22.	(C)	23.	(B)				

Solution

SINGLE CHOICE QUESTIONS

- 1. A heating coil is immersed in a 100 g sample of H₂O(I) at 1 bar and 100°C in a closed vessel. In this heating process, 60% of the liquid is converted into gaseous form at constant pressure of 1 bar. Densities of liquid and gaseous water under these conditions are 1000 kg/m³ and 0.60 kg/m³ respectively. Magnitude of the work done for the process is:
 - (A) 4997 K
- (B) 4970 J
- (C) 9994 J
- (D) None of these

Ans. (C)

Sol.
$$w = -P_{ext}(V_f - V_i)$$

$$= -10^{5} \left(\frac{60 \times 10^{-3}}{0.60} + \frac{40 \times 10^{-3}}{1000} - \frac{100 \times 10^{-3}}{1000} \right)$$

$$= -10^{5}(100 \times 10^{-3} + 0.04 \times 10^{-3} - 0.1 \times 10^{-3})$$

$$|w| = 9994 J$$

2. What is the value of change in internal energy at 1 atm in the process?

$$H_2O$$
 (I, 323 K) \rightarrow H_2O (g, 423 K)

Given:
$$C_{v,m}$$
 (H₂O, I) = 75.0 JK⁻¹ mol⁻¹; $C_{p,m}$ (H₂O, g) = 33.314 JK⁻¹ mol⁻¹

$$\Delta H_{\text{vap}}$$
 at 373 K = 40.7 kJ/mol

- (A) 42.91 kJ/mol
- (B) 43086 kJ/mol
- (C) 42.6 kJ/mol
- (D) 49.6 kJ/mol

Ans. (C)

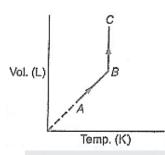
Sol.
$$H_2O(1,323K) \xrightarrow{\Delta U_1} H_2O(1,373K) \xrightarrow{\Delta U_2} H_2O(g_1,373K) \xrightarrow{\Delta U_3} H_2O(g_1,323K)$$

$$CV,m(H_2O,g) = 33.314 - 8.314$$

= 25 J/Kmol

$$\Delta U_2 = \Delta H_2 - \Delta ngRT = 37.6$$

$$\Delta U_{\text{total}} = DU_1 + \Delta U_2 + \Delta U_3$$


=
$$C_{V,m}(I).\Delta T + \Delta V_{vap.} + C_{v,m}(g)\Delta T$$

$$= \frac{75 \times 50}{1000} + 37.6 + \frac{25 \times 50}{1000}$$

= 42.6 kJ/mol

3. Two moles of a triatomic linear gas (neglect vibration degree of freedom) are taken through a reversible process ideal starting from A as shown in figure.

The volume ratio $\frac{V_B}{V_C} = 4$. If the temperature at A is -73°C, then:

Total enthalpies change in both steps is:

- (A) 3000 R
- (B) 4200 R
- (C) 2100 R
- (D) 0

(B) Ans.

Sol.
$$\Delta H_{\text{total}} = \Delta H_{AB} + \Delta H_{BC} = nC_{p,m} \Delta T + 0$$

= $2 \times \frac{7}{2} \times R \times (800 - 200)$
= 4200R

- For polytropic process PVⁿ = constant, molar heat capacity (C_m) of an ideal gas is given by 4.

- (A) $C_{v,m} + \frac{R}{(n-1)}$ (B) $C_{v,m} + \frac{R}{(1-n)}$ (C) $C_{v,m} + R$ (D) $C_{p,m} + R \frac{R}{(n-1)}$

Ans. (B)

dU = da + dwSol.

$$nC_{v,m}$$
. $dT = nC_m$. $dT - P.dV$

$$C_{m} = C_{v,m} + \frac{P.dV}{n.dT} \qquad \dots (1)$$

$$PV^n = KandPV = nRT$$

$$\therefore$$
 KV¹⁻ⁿ = nRT

$$K(1-n)V^{-n}$$
. $dV = nRdT$

$$\frac{dV}{dT} = \frac{nR}{K(1-n)V^{-n}}$$
(2)

From Equations (1) and (2)

$$c_m = c_{v,m} + \frac{R}{(1-n)}OWer of real gurus$$

- 5. One mole of an ideal monoatomic gas at 27oC is subjected to a reversible iso-entropic compression until final temperature reaches to 327oC. If the initial pressure as 1.0 atm then find the value of (ln P_2): (Given: ln 2 = 0.7)
 - (A) 1.75 atm
- (B) 0.176 atm
- (C) 1.0395 atm
- (D) 2.0 atm

Ans. (A)

Sol. For iso-entropic process $\Delta_{\text{system}} = 0$

$$\therefore \ nC_{p,m} \, ln \frac{T_2}{T_1} + nR \, ln \frac{P_1}{P_2} = 0 \quad \Longrightarrow \quad ln(P_2) = \frac{5}{2} \times ln \bigg(\frac{600}{300}\bigg)$$

= 1.75 atm

6. Using listed information's, calculate ΔrG° (in kJ/mol) at 27°C

(A) -214.8

(B) -195.0

(C) -200.3

(D) -256.45

Ans. (D)

Sol. $\Delta_r H^o = 3.\Delta_f H^o(CO,s) + 4\Delta_f H^o(CO_2,g)$

$$-\Delta_f H^o(Co_3O_4,s) - 4.\Delta_f H^o(CO,g)$$

$$\Delta_r S^o = 3 \times 30 + 4 \times 213.7 - 102.5 - 4 \times 197.7$$

= 51.5 J/K-mol

$$\therefore \Delta_r G^o = \Delta_r H^o - T.\Delta_r S^o$$
$$= -241 - \frac{300 \times 51.5}{1000}$$

= -256.45 kJ/mol

7. Consider the following data:

$$\Delta fHo (N_2H_4, I) = 50 \text{ kJ/mol}, \Delta_fH^o (NH_3, g) = -46 \text{ kJ/mol}$$

$$\Delta_{\text{vap}}H$$
 (N₂H₄, I) = 18 kJ/mol

The N-N bond energy in N₂H₄ is:

(A) 226 kJ/mol

(B) 154 kJ/mol

(C) 190 kJ/mol

(D) None of these

Ans. (C)

Sol. $\frac{1}{2}$ N₂(g) + $\frac{3}{2}$ H₂(g) \rightarrow NH₃(g)

Let B.E. of $N \equiv N$ is x

=
$$46 = \frac{x}{2} + \frac{3}{2} \times 436 - 3 \times 393 \Rightarrow x = 958$$

 $N_2H4(I) \rightarrow N_2(g) + 2H_2(g);$

= -50 kJ/mol

$$\begin{split} \Delta_{_{\!f}} H = & \begin{bmatrix} \Delta_{_{\!Vap}} H(N_{_{\!2}} H_{_{\!4}}, I) \\ +4 \times B.E.(N-H) \\ +B.E.(N-N) \end{bmatrix} - \begin{pmatrix} B.E.(N \equiv N) \\ +2B.E.(H-H) \end{pmatrix} \end{split}$$

$$-50 = (18 + 4 \times 393 + y) - (958 + 2 \times 436)$$

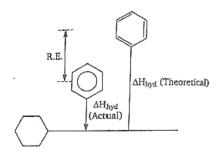
$$-50 = (1590 + y) - (1830)$$

B.E. (N - N) or y = 190 kJ/mol

8. If enthalpy of hydrogenation of $C_6H_6(I)$ into $C_6H_{12}(I)$ is -205 kJ/mol and resonance energy of $C_6H_6(I)$ is -152 kJ/mol then enthalpy of hydrogenation of

is Assume ΔH_{vap} of $C_6H_6(I)$, $C_6H_8(I)$, $C_6H_{12}(I)$ all are equal:

(A) -535.5 kJ/mol


(B) -238 kJ/mol

(C) -357 kJ/mol

(D) -119 kJ/mol

Ans. (D)

- **Sol.** Theoretical heat of hydrogenation of benzene
 - = (Actual heat of hydrogenation) + (Resonance energy)

$$= -205 - 152 = -357$$

Enthalpy of hydrogenation of $\sqrt{} = \frac{-357}{3} = -119 \text{kJ/mo}$

9. For the reaction taking place at certain temperature

$$NH_2COONH_4(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$$

if equilibrium pressure is 3X bar then Δ_r G° would be

(A) -RT In 9 -3RT In X

(B) RT In 4 -3RT In X

- (C) -3RT ln X
- (D) None of these

Ans. (D)

Sol.
$$\Delta G^{\circ} = -RT \ln K_p$$
; $K_p = (2x)^2 X = 4X^3$

$$\Delta G^{\circ} = -RT \ln(4X^3)$$

$$\Delta G^{\circ} = -RT \ln 4 - 3 RT \ln X$$

10. Gibbs Helmholtz equation relates the enthalpy, entropy and free energy change of the process at constant pressure and temperature as

$$\Delta G = \Delta H - T\Delta S$$
 (at constant P, T)

In general, the magnitude of ΔH does not change much with the change in temperature but the term $T\Delta S$ changes appreciably. Hence in some process spontaneity is very much dependent on temperature and such processes are generally known as entropy driven process.

For the reaction at 298 K; $A_2B_4 \rightarrow 2AB_2$

 $\Delta H = 2kJ$ and $\Delta S = 20$ J/K at constant P and T, the reaction will be

- (A) spontaneous and entropy driven
- (B) spontaneous and enthalpy driven

(C) non-spontaneous

(D) at equilibrium

Ans. (A)

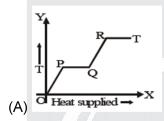
Sol.
$$(\Delta G)_{PT} = 2000 - (20 \times 298) = -3960 \text{J/mol}$$

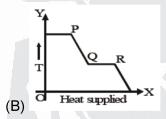
11. Gibbs Helmholtz equation relates the enthalpy, entropy and free energy change of the process at constant pressure and temperature as

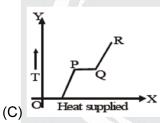
 $\Delta G = \Delta H - T\Delta S$ (at constant P, T)

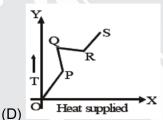
In general the magnitude of ΔH does not change much with the change in temperature but the term T ΔS changes appreciably. Hence in some process spontaneity is very much dependent on temperature and such processes are generally known as entropy driven process.

When CaCO₃ is heated to a high temperature it decomposes into CaO and CO₂, however it is quite stable at room temperature. It can be explained by the fact that


- (A) ΔrH dominates the term $T\Delta S$ at high temperature
- (B) the term $T\Delta S$ dominates the ΔrH becomes negative
- (C) at high temperature both ΔrS and ΔrH becomes negative
- (D) thermodynamics can not say anything about spontaneity


Ans. (B)


Sol. $CaCO_3 \rightarrow CaO + CO_2$ $\Delta H + ve$


Reaction becomes spontaneous at high temperature because $T\Delta S$ dominates over ΔH_{rxn}

12. A block of ice at -10°C is slowly heated and converted into steam at 100°C. Which of the following curves represents the phenomenon qualitatively?

Ans. (A)

Sol. During phase changes, the temperature remains constant.

MULTIPLE CHOICE QUESTIONS

- **13.** When ice melts at 1°C:
 - (A) an increase in entropy
 - (C) a decrease in free energy
- (B) a decrease in enthalpy
- (D) process is spontaneous

Ans. (ACD)

Sol. Entropy \uparrow intermolecular force \downarrow

 $\Delta H > 0$

Spontaneous process $\Delta G = 0$

- **14.** The value of $\Delta H_{transition}$ of C (graphite) \rightarrow C (diamond) is 1.9 kJ/mol at 25oC. Entropy of graphite is higher than entropy of diamond. This implies that:
 - (A) C (diamond) is more thermodynamically stable than C (graphite) at 25°C
 - (B) C (graphite) is more thermodynamically stable than C (diamond) at 25°C
 - (C) diamond will provide more heat on complete combustion at 25°C
 - (D) Δ Gtransition of C (diamond) \rightarrow C(graphite) is -ve

Ans. (BCD)

Sol. $C(graphite) \rightarrow C(diamond)$

$$\Delta G = \Delta H - T\Delta S = 1.9 - 298(-ve) = +ve$$

Graphite is more stable than diamond thermodynamically

$$\Delta_r H = (\Delta_C H)_G - (\Delta C H)_D$$
, $(\Delta C H)_G = -x (\Delta_C H)_D = -y$

$$1.9 = -x + y \Rightarrow y = 1.9 + x$$

Diamond provides more heat on complete combustion in comparison of graphite

- **15.** For an isolated system, the entropy:
 - (A) either increases or remains constant
- (B) either decreases or remains constant

(C) can never decrease

(D) can never increase

Ans. (AC)

Sol. Entropy of isolated system increases or remains constant, but it can never decrease.

COMPREHENSION # 1 (FOR Q. 16 TO Q.20)

Standard Gibb's energy of reaction ($\Delta_r G^o$) at a certain temperature can be computed as $\Delta_r G^o = \Delta_r H^o - T.\Delta_r S^o$ and the change in the value of $\Delta_r H^o$ and $\Delta_r S^o$ for a reaction with temperature can be computed as follows:

$$\Delta_{r}H^{o}T_{2} - \Delta_{r}H^{o}_{T_{1}} = \Delta_{r}C^{o}_{P}(T_{2} - T_{1})$$

$$\Delta_{r} S^{o}_{T_{2}} - \Delta_{r} S^{o}_{T_{1}} = \Delta_{r} C^{o}_{P} \ln \left(\frac{T_{2}}{T_{1}} \right)$$

$$\Delta_r G^o = \Delta_r H^o - T \cdot \Delta_r S^o$$

and by
$$\Delta_r G^o = -RT \ln K_{eq}$$
.

Consider the following reaction:

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

Given:
$$\Delta_f H^o$$
 (CH₃OH, g) = -201 kJ/mol;

$$S^{\circ}$$
 (CH₃OH, g) = 240 J/mol-K;

$$S^{o}(CO, g) = 198 \text{ J/mol-K};$$

$$C_{p,m}^{o}$$
 (CO) = 29.4 J/mol-K;

and
$$\ln\left(\frac{320}{300}\right) = 0.06$$
, all data at 300 K.

$$\Delta_f H^o$$
 (CO, g) = -114 kJ/mol

$$S^{\circ}$$
 (H₂, g) = 29 JK⁻¹ mol⁻¹

$$C_{p,m}^{o}(H_2) = 28.8 \text{ JK}^{-1} \text{ mol}^{-1}$$

$$C_{p,m}^{o}$$
 (CH₃OH) = 44 J/mol-K

```
16.
        \Delta_rS° at 300 K for the reaction is:
         (A) 152.6 J/K-mol (B) 181.6 J/K-mol (C) –16 J/K-mol
                                                                                         (D) None of these
Ans.
        (C)
Sol.
        CO + 2H2 ⇌ CH3OH
         \Delta S^{\circ} = S^{\circ}(CH_3OH) - S^{\circ}(CO) - 2 \times S^{\circ}(H_2)
         = 240 - 198 - (2 \times 29)
         = 240 - 198 - 58
         = -16 \text{ J/K mol}
        \Delta_rH° at 300 K for the reaction is
17.
                             (B) 87 kJ/mol (C) –315 kJ/mol
                                                                                         (D) -288 kJ/mol
         (A) -87 \text{ kJ/mol}
Ans. (A)
Sol.
        \Delta_{r}H = \Delta_{f}H(CH_{3}OH) - (2 \times \Delta_{f}H(H_{2})) - \Delta_{f}H(CO)
         = -201 - 0 - (-114)
         = -87 \text{ kJ/mol}
18.
        \Delta_rS° at 320 K is
                                  (B) 150.02 J/mol-K (C) 172 J/mol-K
                                                                                         (D) None of these
         (A) 155.18 J/mol-K
Ans. (D)
       S_{320} = S_{320}^{\circ} + C_{p} \ln \frac{T_{2}}{T_{c}}
Sol.
         For CH<sub>3</sub>OH \Rightarrow S<sub>320</sub> = 240 + 44 × 0.06 = 242.64 J/K -Mol
         For H_2 \Rightarrow S_{320} = 29 + 28.8 \times 0.06 = 30.728 \text{ J/K} - \text{Mol}
         For CO \Rightarrow S<sub>320</sub> = 198 + 29.4 × 0.06 = 199.764 J/K -Mol
         Now.
         \Delta_r S_{320} = S(CH_3OH) - (2 \times S(H_2) - S(CO))
         = 242.64 - (2 \times 30.728) - 199.764
         = 242.64 - 61.456 - 199.764
         = -18.58 \text{ J/K} - \text{mol}
        \Delta_{\rm r}{\rm H}^{\rm o} at 320 K is
19.
         (A) -288.86 kJ/mol (B) -289.1 kJ/mol
                                                                                          (D) None of these
                                                              (C) -87.86 kJ/mol
Ans. (C)
Sol.
        \Delta H_2 = \Delta H_1 + \Delta C_p (T_2 - T_1)
         \Rightarrow \Delta H_{320} = \Delta H_{300} + (44 - (2 \times 28.8) - 29.4)(320 - 300) \times 10^{-3}
         =-87+\frac{(-43)\times20}{1000} over of real gurus
         = -87 - 0.86
         = -87.86 \text{ kJ/ mol}
        \Delta_rG° at 320 K is
20.
         (A) -48295.2 kJ/mol (B) -240.85 kJ/mol (C) 240.85 kJ/mol
                                                                                         (D) -81.91 kJ/mol
Ans. (D)
Sol.
        \Delta G = \Delta H - T\Delta S
         \Rightarrow \Delta G_{320} = -87.86 - 320 \times (-18.58) \times 10^{-3}
         = -87.86 + 5.9456
```

= -81.9144 kJ/ mol

MATRIX TYPE QUESTIONS

21. Column I and Column II contains four entries each. Entries of Column I are to be matched with some entries of column II. One or more than one entries of Column I may have the matching with the same entries of Column II.

Column-I (Process)	Column-II (Entropy Change)
(A) Reversible isothermal compression of an ideal gas	(P) ΔSSystem > 0
(B) Isothermal free expansion (Pext = 0) of an ideal gas	(Q) ∆SSystem < 0
(C) Reversible adiabatic expansion of an ideal gas	(R) ΔSSystem = 0
(D) Reversible ideal gas expansion	(S) Information insufficient

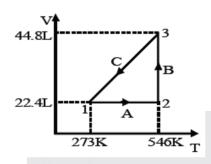
- (A) $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow R$; $D \rightarrow S$
- (B) $A \rightarrow Q$; $B \rightarrow P$, S; $C \rightarrow P$; $D \rightarrow R$
- (C) $A \rightarrow R$; $B \rightarrow Q$; $C \rightarrow Q$; $D \rightarrow P$, S
- (D) $A \rightarrow S$; $B \rightarrow P$, R; $C \rightarrow Q$; $D \rightarrow P$, R

- Ans. (A)
- Sol. Fact
- 22. Match the following

Column-l	Column-II
(A) (∆Gsystem)T,P	(P) $nRIn\left(\frac{V_2}{V_1}\right)$
(B) Work done in reversible isothermal ideal gas expansion	(Q) $nRTIn\left(\frac{P_2}{P_1}\right)$
(C) Δ G for reversible isothermal expansion of an ideal gas	(R) −nFE
(D) Δ Sgas for isothermal expansion of an ideal gas	(S) $nRIn\left(\frac{P_1}{P_2}\right)$

- (A) $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow R$; $D \rightarrow S$
- (B) $A \rightarrow Q$; $B \rightarrow P$, S; $C \rightarrow P$; $D \rightarrow R$
- (C) $A \rightarrow R$; $B \rightarrow Q$; $C \rightarrow Q$; $D \rightarrow P$, S
- (D) $A \rightarrow S$; $B \rightarrow P$, R; $C \rightarrow Q$; $D \rightarrow P$, R

- Ans. (C)
- Sol. Fact
- 23. Match the following


Column-I	Column-II
$(A) \left(\frac{\partial U}{\partial T}\right)_{V} \bigcirc V / A$	(P) CP
$(B) \left(\frac{\partial H}{\partial T} \right)_{P}$	(Q) CV
$(C) \left(\frac{\partial G}{\partial T}\right)_{P}$	(R) -S
$(D) \left(\frac{\partial G}{\partial P}\right)_{T}$	(S) V

- $(A)~A \rightarrow P,~R;~B \rightarrow Q;~C \rightarrow P,~R;~D \rightarrow Q,~S \quad (B)~A \rightarrow Q;~B \rightarrow P;~C \rightarrow R;~D \rightarrow S$
- (C) $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow Q$
- (D) $A \rightarrow S$; $B \rightarrow P$, R; $C \rightarrow Q$; $D \rightarrow P$, R

- Ans. (B)
- Sol. Fact

SUBJECTIVE ANSWER TYPE

24. One mole of an ideal monoatomic gas is carried through the cycle of the given figure consisting of step A, B and C and involving state 1, 2 and 3. Fill in the blank space in the table given below assuming reversible steps.

Table-1					
State	Р	V	Т		
1					
2			4// 22		
3		7			

Step	Name of process	q	w	ΔΕ	ΔН
Α					
В					
С				4	
overall		M	A /		A

Sol.

Table-1					
State	P	V	T		
1	1 atm	22.4	273		
2	2 atm	22.4	546		
3	1 atm	44.8	546		

Step	Name of process	q	w	ΔΕ	ΔΗ
А	Isochoric	3/2 R(273)	0	3/ 2 R(273)	5/ 2 R (273)
В	Isothermal	546 R In 2	-546 R In 2	0	0
С	Isobaric	-5/ 2 R (273)	R (273)	-3/ 2 R(273)	-5/ 2 R (273)
overall	cyclic	546Rln2-273R	273R-546RIn2	0	0