CHEMISTRY

TARGET: JEE Advanced - 2021

CAPS - 10

Electrochemistry

Answer	Key
---------------	-----

1. (D)

(B)

3. (D) 4. (D) 5. (A)

6. (B) 2. 7.

(C)

8. (B) (B)

10. (ABC)

11. (BC) 12.

(AD)

13. (ABCD)

16. (D) 17.

(1144)

(265)

14. (C)

19.

15. (A)

21.

22. p(A) 18. 23. (B)

24. (C)

(3.00)

20. (4.00)25. (B)

26. (0571)

(B)

27.

 $(2 \times 10^5 \, dm^3)$

Solution

D is not reacted with HCI, So not easily oxidized at compare to A, B to C. 1.

C is reduced B as well as D, but unable to reduce A.

So A is obidized easily as compare to other metals.

: ability to act as easily as compare to other metals.

 $E_{\text{Cell}}^{\circ} = \frac{0.0591}{2} \log K_{\text{eq}}$ 2.

$$0.003 = \frac{0.0591}{2} log \frac{\left[D^{+}\right]^{2}}{\left[H^{+}\right]^{2}} = \frac{\left[D^{+}\right]}{\left[H^{+}\right]} = 1.123$$

 $E_{Cr_2O_7^2 \mid Cr^{3+}} = E_{Cr_2O_7^2 \mid Cr^{3+}}^{\circ} - \frac{0.0591}{6} \times \left(log \frac{[Cr^{3+}]^2}{[Cr_nO_7^{2-}]} \times \frac{1}{[H^+1]^{14}}\right)$ 3.

$$E_{Cr_2O_7^{2-}|Cr^{3+}} = 1.33 - \frac{0.0591}{6}log\frac{1}{(0.01)^{14}}$$

Equivalents of CO_2 produced = $\frac{(I \times \eta) \times t}{96500}$ 4.

$$= \frac{0.5 \times 0.8 \times 96.5 \times 60}{96500} = 0.024$$

Moles of CO_2 (n = 1) produced = 0.024

moles of
$$C_2H_6$$
 (n = 2) produced = $\frac{0.024}{2}$ = 0.012

Total moles of gases produced ⇒ 0.036

$$V_{gases} = \frac{nRT}{p} = \frac{0.036 \times 0.0821 \times 300}{(740/760)} = 0.91 \, litre$$

5. Initial m moles of $Cu^{2+} = 5$;

m-eq. or m-moles of H⁺ produced = $100 \times 10^{-2} = 1$

⇒ m-moles of Cu²⁺ converted into

$$Cu=\frac{1}{2}=0.5$$

m-moles of Cu^{2+} remaining in solution = 5 - 0.5 = 4.5

$$2Cu^{2+} + 4I^{-} \longrightarrow Cu_{2}O_{2} + I_{2}$$

and $I_2 + 2NaS_2O_3 \longrightarrow 2NaI + Na_2S_4O_6$

m moles of Cu²⁺ remaining = m moles of Na₂S₂O₃

$$4.5 = 0.04 \times V$$

- \Rightarrow V = 112.5 mL
- 6. HBr + NaOH → NaBr + H2O

Initial 10 - -

Mmol

At eq. - - 10 -

Point mmol

At equivalence point, the concentration of NaBr = $\frac{10}{100}$ = 0.1 M

In mole m⁻³, concentration of NaBr = 100 mole m⁻³

Now, $\lambda_m^{\circ}(NaBr) = \lambda_m^{\circ}(Na^+) + \lambda_m^{\circ}(Br^-) = 12 \times 10^{-13} \text{ S m}^2 \text{ mol}^{-1}$

Now, $\lambda_m^o(S m^2 mol^{-1}) = \frac{K(sm^{-1})}{C(mol m^{-3})}$

$$12 \times 10^{-3} = \frac{k}{100}$$

 $K = 1.2 \text{ m}^{-1}$

7. For strong electrolytes, Ver of real gurus

$$\lambda_m = \lambda_m^o - A\sqrt{C}$$

$$282 = \lambda_m^{\circ} - A(0.4)$$
(1)

$$240 = \lambda_m^{\circ} - A$$
(2)

Substituting the value of λ_m° from equation (2) to equation (1),

$$282 = \lambda_m^o - 0.4 \left(\lambda_m^o - 240\right)$$

$$\lambda_m^o = 310$$

8. AgCl +
$$e^- \rightarrow Ag + Cl^- E^\circ = 0.2 \text{ V}$$

$$Ag \rightarrow Ag^{+} + e^{-}$$
 $E^{\circ} = -0.79 \text{ V}$

$$AgCI \rightarrow Ag^{+} + CI^{-}$$
 $E^{\circ} = -0.59 \text{ V}$

$$E^{o} = \frac{0.059}{n} log K \Rightarrow -0.59 = \frac{0.059}{1} log K_{SP}$$

$$K_{SP} = 10^{-10}$$

Now solubility of AgCl in 0.1 M AgNO₃

$$S (S + 0.1) = 10^{-10} \Rightarrow S = 10^{-9} \text{ mol/L}$$

Hence, 1 mole dissolves in 10⁹ L solution.

Hence, in 10⁶ L amount that dissolve is 1 mmol.

- **9.** The concentration of Fe^{3+} decreases due to conversion to Fe^{+2} .
- 10. (ABC)
- 11. At Anode

$$H_2(g) \rightarrow 2H^+ + 2e^-$$

$$P_1$$
 C_1

At Cathode

$$2H^+ + 2e^- \rightarrow H_2$$

$$C_2$$
 F

Net

$$H_2(g) + 2H^+ \rightarrow 2H^+ + H_2$$

$$P_1$$
 C_2 C_1 P_2

$$\mathsf{E}_{\mathsf{cell}} = \frac{-0.0591}{2} log \frac{\left(\mathsf{H}^{+}\right)_{\mathsf{LHS}}^{2} \left(\mathsf{P}_{\mathsf{H}_{2}}\right)_{\mathsf{RHS}}}{\left(\mathsf{H}^{+}\right)_{\mathsf{RHS}}^{2} \left(\mathsf{P}_{\mathsf{H}_{2}}\right)_{\mathsf{LHS}}}$$

$$Pt|H_2(P_1)|H^+(C_1)||H^+(C_2)|H_2(P_2)|Pt$$

So, here
$$[H^{+}]LHS = x_{1}, [H^{+}]_{RHS} = x_{2}$$

- **12.** Substance with More positive value of E⁰ has more tendency to get reduced.
- 13. Refer theory of corrosion

14. Equivalent of
$$Zn^{2+}$$
 produced = 0.1 or Moles of $Zn^{2+} = \frac{0.1}{2} \Rightarrow 0.05$

+ve charge increases in first compartment so due to interaction and maintain electrical neutrality Zn^{2+} move toward II compartment and NO_3^- move towards first compartment. Solution is always electrically neutral so charge of 1 Zn^{2+} is neutralized by $2NO_3^-$.

$$\therefore$$
 [Zn²⁺] in first compartment = 1+ $\frac{0.05}{2}$ = 1.025M

15. Equivalent of Zn^{2+} produced = 0.1 or Moles of $Zn^{2+} = \frac{0.1}{2} \Rightarrow 0.05$

+ve charge increases in first compartment so due to interaction and maintain electrical neutrality Zn^{2+} move toward II compartment and NO_3^- move towards first compartment. Solution is always electrically neutral so charge of 1 Zn^{2+} is neutralized by $2NO_3^-$.

$$\therefore [Zn^{2+}] \text{ in first compartment} = 1 + \frac{0.05}{2} = 1.025M$$

Concentration of NO_3^- in second compartment = 1 – 0.05 = 0.95 M

16. In third compartment moles of Cu^{2+} reduced = $\frac{0.05}{2}$ = 0.025

Relatively –ve charge increased so SO₄²⁻ and Na⁺ move toward opposite direction to maintain electrical neutrality

$$\left[SO_4^{2-}\right]_{ramaining} = 1 - \frac{0.025}{2} \Rightarrow 0.975M$$

17.
$$K_a = \frac{C\alpha}{1-\alpha} \Rightarrow \frac{1}{6} = \frac{\alpha^2}{1-\alpha}$$

$$\Rightarrow \qquad \alpha = \frac{-1 \pm \sqrt{(1)^2 + 4 \times 6 \times 1}}{12} = \frac{-1 \pm \sqrt{1 + 24}}{12} = \frac{1}{3}$$

$$\therefore \left[\mathsf{IO}_3 \right] = 1 \times \frac{1}{3} = \frac{1}{3} \mathsf{M}$$

$$\Rightarrow \left[Ag^{+} \right] = \frac{3 \times 10^{-8}}{\frac{1}{3}} = 9 \times 10^{-8} M$$

Now
$$2Ag + Zn^{+2} \xrightarrow{2e^-} 2Ag^+ + Zn$$

Give
$$E = -1.56 + \frac{0.059}{2} log \frac{1}{(9 \times 10^{-8})^2} = -1.144 V = -1144 mV$$

18.
$$Pb + PbO_2 + 4H^+ + 2SO_4^{2-} \rightarrow 2PbSO_4 + 2H_2O_4^{2-}$$

$$NH_2SO_4 = M_{H_2SO_4} (since 2SO_4^{2-} requires 2e^-)$$

i.e., Normality = Molarity

Now,
$$M_1(H_2SO_4)$$
 before electrolysis = $\frac{39 \times 1.294 \times 1000}{98 \times 100} = 5.15$

$$M_2(H_2SO_4)$$
 after electrolysis = $\frac{20 \times 1.139 \times 1000}{98 \times 100} = 2.325$

Now, moles of H_2SO_4 before electrolysis = 5.15 × 3.5 = 18.025

Moles of H_2SO_4 after electrolysis = 2.235 × 3.5 = 8.1375

∴ Molos of equivalents of H₂SO₄ used

Weight of
$$H_2SO_4$$
 used up = 3.5 * (1.294 * 0.39 - 1.139 * 0.2) * 1000g = 969g

Equivalences of $H_2SO_4 = 1*969/98$

Ampere hour = 1*969/98*96500/3600 = 265

19.
$$\Lambda = \frac{K}{C} \times 1000 = \frac{2.19 \times 10^{-4}}{0.1} \times 1000 = 2.19 Scm^2 mol^{-1}$$

$$\alpha = \frac{\Lambda}{\Lambda_o} = \frac{2.19}{400} = 5.475 \times 10^{-3}$$

$$K_{\alpha} = \frac{C\alpha^2}{1-\alpha} = \frac{0.1(5.475 \times 10^{-3})^2}{1-5.475 \times 10^{-3}} = 2.99 \times 10^{-6}$$

20.
$$\wedge_{M}^{\infty}(MA) = \wedge_{M}^{\infty}(HCI) + \wedge_{M}^{\infty}(NaA) - \wedge_{M}^{\infty}(NaCI)$$

$$= 425 + 100 - 125 - 400 \text{ S cm}^2 \text{ mol}^{-1}$$

$$pH = 4$$
, $[H^{+}] = 10^{-4} = \alpha C$

$$\alpha = \frac{\Lambda_m}{\Lambda^\infty} = \frac{200}{400} = 0.5;$$

$$K_a = \frac{(C\alpha).\alpha}{(1-\alpha)} = \frac{10^{-4}(0.5)}{(1-\alpha)} = 10^{-4}; pK_a = 4$$

- 21. (A) The reduction tendency of AuCl₄⁻ is more than reduction tendency of Li⁺
 - (B) The tendency of reduction of Zn^{2+} is more than that of Al^{3+} , while the given representation shows the reverse order, thus, the cell is non-spontaneous and $E_{cell}^{\circ} < 0$.
 - (C) For a spontaneous concentration cell, the concentration of anode compartment should be less than the concentration of cathode compartment.
 - (D) The tendency of reduction of Cu^{2^+} is more than that of Ni^{2^+} and the given representation shows the same order, thus, the cell is spontaneous and $E_{cell}^{\circ} > 0$. Such cells act as galvanic cells.
- **22.** Electrolysis of dilute solution of NaCl: Water is reduced at cathode to give hydrogen gas and chloride ion is oxidized at anode (due to overpotential of oxygen) to give chlorine gas.

Electrolysis of concentrated solution of AgNO₃: Silver ion is reduced at cathode to deposit silver and water is oxidized at anode to give oxygen gas.

23. No. of equivalent of aluminum,
$$\frac{W}{E} = \frac{I \times \eta \times t}{96500}$$

$$\frac{24 \times 5}{27} \times 3 = \frac{9650 \times 0.9 \times t}{96500}$$

t = 148.14 sec

24.
$$3Cu(s) + 8H^+ + 2NO_3^- \rightarrow 3Cu^{2+} + 2NO + 4H_2O$$
(1)

$$Cu(s) + 4H^{+} + 2NO_{3}^{-} \rightarrow Cu^{2+} + 2NO_{2} + 2H_{2}O$$
(2)

Let concentration of HNO₃ is x so $[H^+] = x$, and $[NO_3^-] = x$

$$\mathsf{E}_{\mathsf{NO}_{3}^{-}|\mathsf{NO}} - \mathsf{E}_{\mathsf{Cu}^{2+}|\mathsf{Cu}} = \mathsf{E}_{\mathsf{NO}_{3}^{-}|\mathsf{NO}_{2}} - \mathsf{E}_{\mathsf{Cu}^{2+}|\mathsf{Cu}}$$

or
$$\boldsymbol{E}_{NO_3^-|NO}^{} = \boldsymbol{E}_{NO_3^-|NO_2}^{}$$

$$\left(0.96-0.34\right)\!-\!\frac{0.06}{6}log\!\frac{\left[Cu^{2^{+}}\right]^{\!3}\left(P_{NO}^{2}\right)}{\left\lceil NO_{3}^{^{-}}\right\rceil ^{\!2}\!\left\lceil H^{^{+}}\right\rceil ^{\!8}}$$

$$= (0.79 - 0.34) - \frac{0.06}{2} log \frac{\left[Cu^{2+}\right] \left(P_{NO_2}^2\right)}{\left[NO_3^{-7}\right]^2 \left[H^{+7}\right]^4} \quad \Rightarrow \quad 0.62 - \frac{0.06}{6} log \frac{10^{-9}}{x^{10}} = 0.45 - \frac{0.06}{2} log \frac{10^{-7}}{x^6}$$

$$\log x = 0.657 = 0.66 \text{ or } x = 10^{+0.66}$$

25.
$$E_{cell} = \frac{0.06}{1} log \frac{\left[H^{+}\right]_{RHS}}{\left[H^{+}\right]_{LHS}}$$

or
$$E_{cell} = 0.06 \left[\left(pH \right)_{LHS} - \left(pH \right)_{RHS} \right]$$

$$(pH)_{LHS} = pK_a + log \frac{A^-}{HA}$$

$$=4 + log\left(\frac{1}{0.1}\right) = 5; (pH)_{RHS} = 4$$

$$E_{cell} = 0.06(5 - 4) = + 0.06 V$$

- 26. (0571)
- **27.** For KCI,

$$\lambda_{M} = \frac{k \times 1000}{M} \quad \Longrightarrow \quad 138 = \frac{k \times 1000}{0.02}$$

$$k = 2.76 \times 10^{-3} = \frac{1}{R} \left(\frac{I}{a} \right) = \frac{1}{85} \left(\frac{I}{a} \right)$$

$$(I/a) = 0.2346$$

For
$$H_2O: k_{H_2O} = \frac{1}{9200}(I/a)$$

For NaCl:
$$k_{NaCl} = \frac{1}{7600} (I/a)$$

$$\lambda_{M} = \frac{\left(k_{NaCl} - k_{H_{2}O}\right) \times 1000}{M}$$

$$126.5 = \frac{\left(\frac{1}{7600} - \frac{1}{9200}\right) \times 0.2346 \times 1000}{M}$$

$$M = 4.2438 \times 10^{-5} M = \frac{500}{58.5 \times V} = 4.2438 \times 10^{-5}$$

$$V = 2.014 \times 10^5 L$$

Power of real gurus