CHEMISTRY

TARGET: JEE Advanced - 2022

CAPS-1

MOLE CONCEPT EQUIVALENT CONCEPT

1.	A sample of $Fe_2(SO_4)_3$ and FeC_2O_4 was dissolved in dilute H_2SO_4 . The complete oxidation of reaction
	mixture required 40 mL of N/16 KMnO ₄ solution. After the oxidation, the reaction mixture was reduced
	by Zn and dilute H ₂ SO ₄ . On again oxidation by same KMnO ₄ , 60 mL were required. Calculate the ratio
	of milli moles of $Fe_2(SO_4)_3$ & FeC_2O_4 .

(A) 7:4

t = 0 t = t

- (B) 4:7
- (C) 3:7
- (D) 7:3

Ans. (A)

Sol. Let m.moles of $Fe_2(SO_4)_3$ and FeC_2O_4 are x and y. In first reaction, only FeC_2O_4 react with KMnO₄ as :

$$FeC_2O_4 + KMnO_4 \longrightarrow Fe^{+3} + CO_2 + Mn^{+2}$$
v.f. = 3 v.f. = 5
m.eq. of $FeC_2O_4 = m$. eq. of $KMnO_4$

$$y \times 3 = 40 \times \frac{1}{16}$$

 $y = \frac{40}{48} \qquad (1)$ In IInd reaction, all Fe⁺³ is convert into Fe⁺²:

In IIIrd reaction all Fe⁺² again react with KMnO₄ as:

Fe⁺² + KMnO₄
$$\longrightarrow$$
 Fe⁺³ + Mn⁺²
v.f. = 1 v.f. = 5
m.eq. of Fe⁺² = m_{eq} of KMnO₄
y + 2x = 60 × $\frac{1}{16}$

Putting the value of y from equation 1st,

$$2x = \frac{60}{16} - \frac{40}{48}$$
 $2x = \frac{140}{48} = \frac{40}{48}$
Wer of real gurus

$$x = \frac{70}{48}$$
(2)

From eq. (1) and (2),

$$\frac{x}{y} = \frac{7}{4}$$
 Ans.

- 2. 0.7 g of $(NH_4)_2$ SO₄ sample was boiled with 100 mL of 0.2 N NaOH solution till all the NH₃ gas is evolved. The resulting solution was diluted to 250 mL. 25 mL of this solution was neutralized using 10 mL of a 0.1 N H₂SO₄ solution. The percentage purity of the $(NH_4)_2$ SO₄ sample is :
 - (A) 94.3

(A)

- (B) 50.8
- (C) 47.4

(D) 79.8

Ans.

Sol. m.eq of
$$(NH_4)_2 SO_4 + m.eq$$
 of $H_2 SO_4 = m.eq$ of NaOH

(m.moles × 2) +
$$(0.1 \times 10 \times \frac{250}{25})$$
 = 0.2×100

$$\therefore$$
 m.mole of $(NH_4)_2 SO_4 = 5$

wt. of
$$(NH_4)_2 SO_4 = \frac{5}{1000} \times 132 = 0.66 g$$

$$\therefore$$
 % of $(NH_4)_2 SO_4 = \frac{0.66}{0.7} \times 100 = 94.28 \% \approx 94.3 \%$

3. Which of the following statements is incorrect:

- (A) 0.2 moles of KMnO, will oxidise one mole of ferrous ions to ferric ions in acidic medium.
- (B) 1.5 moles of KMnO₄ will oxidise 1 mole of ferrous oxalate to one mole of ferric ion and carbon dioxide in acidic medium in acidic medium.
- (C) 0.6 moles of KMnO₄ will oxidise 1 mole of ferrous oxalate to one mole of ferric ion and carbon dioxide in acidic medium.
- (D) 1 mole of $K_2Cr_2O_7$ will oxidise 2 moles of ferrous oxalate to ferric ions and carbon dioxide in acidic medium.

Ans. (B)

Sol.
$$MnO_4^- + 5e^- + 8 H^+ \longrightarrow Mn^{2+} + 4 H_2O$$

⇒ 1 mole of MnO₄⁻ accepts 5 mole of e⁻

1/5 mole of MnO₄- accepts 1 mole of e-

⇒ 0.2 mole of MnO₄⁻ accepts 1 mole of e⁻

⇒ 0.6 mole of MnO₄ accepts 3 mole of e⁻

$$Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$$

⇒ 1 mole of Fe²⁺ will liberate 1 mole of e⁻

$$Cr_2O_7^{2-} + 6e^- + 14 H^+ \longrightarrow 2 Cr^{+3} + 7 H_2O$$

 \Rightarrow 1 mole of $Cr_2O_7^{2-}$ will accept 6 moles of e^{-}

1 mole of $FeC_2O_4 \longrightarrow Fe^{3+} + CO_2 + 3 e^{-}$

⇒ 1 moles of ferrous oxalate gives 3 moles of e⁻

 \Rightarrow 0.2 moles of KMnO₄ = 1/5 moles of KMnO₄ oxidises 1 mole of Fe²⁺ ion. (Tallies with statement

A)

0.6 moles of $KMnO_4$ = 3/5 moles of $KMnO_4$ will oxidise 1 mole of ferrous oxalate (Tallies with statement C)

1 mole of K₂Cr₂O₇ will oxidise 2 moles of ferrous oxalate. (Tallies with statement D)

Hence ,(A) , (C) , (D) are correct while (B) is incorrect.

4. A 10.0 g sample of a mixture of calcium chloride and sodium chloride is treated with Na₂CO₃ solution. This calcium carbonate is heated to convert all the calcium to calcium oxide and the final mass of calcium oxide is 1.62 gm. The percentage by mass of calcium chloride in the original mixture is:

Ans. (E

Sol.
$$CaCl_2 + Na_2CO_3 \longrightarrow CaCO_3 + 2 NaCl$$

$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$

Mole of
$$CaCl_2$$
 = mole of $CaCO_3$ = mole of $CaO = \left(\frac{1.62}{56}\right)$

Mass of
$$CaCl_2 = \left(\frac{1.62}{56}\right)$$
 Molar mass of $CaCl_2$

$$= \left(\frac{1.62}{56}\right) \times 111 \text{ gm}.$$

% of CaCl₂ =
$$\frac{3.21}{10}$$
 × 100 = 32.1 %.

- **5.** Consider the following statements :
 - 1. If all the reactants are not taken in their stoichiometric ratio, then at least one reactant will be left behind
 - 2. 2 moles of H₂(g) and 3 moles of O₂(g) produce 2 moles of water.
 - 3. equal wt. of carbon and oxygen are taken to produce CO_2 then O_2 is limiting reagent.

The above statements 1, 2, 3 respectively are (T = True, F = False)

- (A) TTT
- (B) FTF
- (C) FFF
- (D) TFT

Ans. (A)

Sol.

(1) It is a fact.

(2)
$$2H_2 + O_2 \longrightarrow 2H_2O$$

Initial mole 2

3

final mole 0

3-1 = 2

(3) C + $O_2 \longrightarrow CO_2$

 $\frac{W}{12}$ $\frac{W}{32}$

Here C is limiting reagent.

- **6.** During the disproportionation of lodine to iodide and iodate ions, the ratio of iodate and iodide ions formed in alkaline medium is :
 - (A) 1:5
- (B) 5:1
- (C) 3:1

(D) 1:3

Ans. (A)

Sol. $3l_2 + OH^- \longrightarrow IO_3^- + 5I^-$ (balance reaction)

So, ratio is 1:5.

7. A 5.0 cm 3 solution of H $_2$ O $_2$ liberates 0.508 g of I $_2$ from an acidified KI solution.

The strength of H₂O₂ solution in terms of volume strength at STP is

- (A) 2.24 vol
- (B) 8.96 vol
- (C) 1.12 vol
- (D) 4.48 vol

Ans. (D)

Sol.

$$-1$$
 -1 -2 0 $H_2O_2 + KI \rightarrow KOH + I_2$

n-fac $I_2 = 2$, n-fac $H_2O_2 = 2$

Eq. of I_2 = Eq. of H_2O_2

$$\frac{0.508}{254} \times 2 = M_{H_2O_2} \times 5 \times 10^{-13} \times 2$$

 $M_{H_2O_2} = 0.4 M$

Vol. strength = M×11.2/e/r of real gurus

- $= 0.4 \times 11.2$
- = 4.48
- \therefore Vol. strength of H₂O₂ = 4.48
- 8. A 0.6 g sample of only CaC₂O₄ and MgC₂O₄ is heated at 500oC converting them to CaCO₃ and MgCO₃ weighing 0.465 g. If the sample was heated to 900oC where the products are CaO and MgO, what will be the weight of mixture of oxides
 - (A) 0.12 g
- (B) 0.21 g
- (C) 0.25 g
- (D) 0.3 g

Ans. (C)

Sol. $CaC_2O_4 + MgC_2O_4 \xrightarrow{\Delta} \underbrace{CaCO_3 + MgCO_3}_{0.465a}$

 $CaC_2O_4 \xrightarrow{\Delta} CaCO_3 + CO$

 $MgC_2O_4 \xrightarrow{\Delta} MgCO_3CO$

Molecular Weight $CaC_2O_4 = 128 \text{ gm}$

Molecular Weight $MgC_2O_4 = 112 \text{ gm}$

 $CaC_2O_4 \to xgm,\, CaCO_3 \to ygm$

128gm 100gm CaCO₃

 $x gm \longrightarrow y$

 $100x = 128y \Rightarrow x = 1.28y$

 $MgC_2O_4 \rightarrow 0.6 - x$, $MgCO_3 \rightarrow 0.465 - y$

118gm <u>→ 84gm MgCO</u>₂

 $0.6 - x \longrightarrow 0.465 - ygm$

 \Rightarrow 112gm (0.465 - y) = 84 (0.6 - x)

 \Rightarrow 112 (0.465 - y) = 84 (0.6 - 1.28y)

 \Rightarrow 52.08 - 112y = 50.4 - 107.52y

 \Rightarrow 1.68 = 4.48y

 \Rightarrow y = 0.375

 \Rightarrow x = 0.48

 \therefore Amount of CaCO₃ = 0.375

Amount of $MgCO_3 = 0.09$

 $CaCO_3 \xrightarrow{\Delta} CaO + CO_2$

 $MgCO_3 \xrightarrow{\Delta} Mg0 + CO_2$

100 gm CaCO₃ → 56 gm CaO

 $0.375 \text{ gm} \rightarrow ? = 0.21 \text{ gm CaO}$

84 gm $MgCO_3 \rightarrow 40$ gm MgO

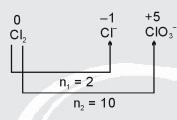
 $0.09 \text{ gm} \rightarrow ? = 0.042 \text{ gm MgO}$

 \therefore Total oxide formed = 0.21 + 0.04 \simeq 0.25 gm

- 9. $K_2Cr_2O_7$ can supply "oxygen" to oxidise pollutants in a water sample. If one kilogram of such water sample requires 20 ml of 0.1 M $K_2Cr_2O_7/H^+$, what is the oxygen requirement of that water in ppm units?
 - (A) 96 ppm
- (B) 48 ppm
- (C) 24 ppm
- (D) 32 ppm

Ans. (A)

Sol. $K_2Cr_2^{+6}O_4 + H_3SO_4 \rightarrow K_3SO_4 + Cr_2(SO_4)_3 + H_2O + O_2$


 $Cr_2O_7^{2-}$, n-factor = 6 Eq of $K_2Cr_2O_7$ = Eq. of O_2

O₂, n-factor = 4
$$6 \times 0.1 \times 20 \times 10^{-3} = \text{moles} \times 4$$

Moles = 3×10^{-3}
Wt. of O₂ = $3 \times 10^{-3} \times 32 \text{ gm}$
= $96 \times 10^{-3} \text{ gm}$
Ppm of O₂ = $\frac{96 \times 10^{-3}}{10^3} \times 10^6$
= 96 ppm
NOTE; Given 1 kg water – 10^3 g

- 10. Cl₂ disproportionate into Cl⁻ ions and ClO₃⁻ ions in hot alkali. Which statement is wrong about this reaction?
 - (A) Equivalent weight of Cl₂ is 60 % that of molecular weight.
 - (B) Equivalent weight of oxidised chlorine is 7.1.
 - (C) $\frac{5}{6}$ th fraction of total chlorine is reduced.
 - (D) $\frac{5}{6}$ th fraction of total chlorine is oxidized.

Ans. (D)

Sol.

(a) n factor of $Cl_2 = \frac{10 \times 2}{12} = \frac{5}{3}$

$$\Rightarrow \qquad \text{Eq. wt.} = \frac{71 \times 3}{5} = 42.6$$

= 60% of mol wt.

(b) Eq. wt. of Cl2 oxidized

Eq. wt. =
$$\frac{71 \times 0}{10}$$
 = 7.1

(c)
$$0 -1 +5$$

 $CI_2 CI^- CIO_3^-$
 $n = 2$
 $n = 10$

For balancing: $12CI_2 \rightarrow 10CI^- + 2CIO_3^-$

$$\therefore$$
 Fraction of Cl₂ reduced = $\frac{10}{12} = \frac{5}{6}$

(d) Fraction of
$$Cl_2$$
 oxidized $\frac{2}{12} = \frac{1}{6}$

Therefore (d) is wrong statement.

- 11. A mixture of H₂SO₄ and H₂C₂O₄ (oxalic acid) and some inert impurity weighing 3.185 g was dissolved in water and the solution made up to 1 litre, 10 mL of this solution required 3 mL of 0.1 N NaOH for complete neutralization. In another experiment 100 mL of the same solution in hot condition required 4 mL of 0.02M KMnO₄ solution for complete reaction. The wt. % of H₂SO₄ in the mixture was:
 - (A) 40
- (B) 50
- (C) 60
- (D) 80

Ans. (A)

Sol. Mixture: $H_2SO_4 + H_2C_2O_4$.

Titration: $1 \rightarrow 10$ ml mixture with NaOH

Titration: $2 \rightarrow 100$ ml mixture with 4 ml, 0.02 M KMnO₄

From titration 2 \Rightarrow KMnO₄+H₂C₂O₄ \rightarrow Mn²⁺ + CO₂

n-fac KMnO₄ = 5

 $n-fac H_2C_2O_4 = 2$

 $\overset{2}{4}$ × 0.02 × 5 = 2 × moles of H₂C₂O₄

Moles of $H_2C_2O_4 = 0.2$ m mol

0.2 mmol H₂C₂O₄ in 100 ml

 \Rightarrow 2 mmol H₂C₂O₄ in 1 lit

From titration: $1 \Rightarrow NaOH + H_2SO_4 \rightarrow Na_2SO_4$

NaOH + $H_2C_2O_4 \rightarrow Na_2C_2O_4$

Eq. of NaOH = eq. of H_2SO_4 + eq. of $H_2C_2O_4$

NOTE: In 10 ml, 0.02 mmol H₂C₂O₄ is present

 \Rightarrow 0.1 \times 3 = 2 \times moles H₂SO₄ + 2 \times 0.02

 \Rightarrow moles H₂SO₄ = 0.13 mmol in 10 ml mixture

= $13 \times 98 \times 10^{-3}$ gm H₂SO₄ in 1 lit mixture

 $= 1.274 \text{ gm H}_2SO_4$

∴ % H_2SO_4 in mixture = 40%

12. Oxalic acid $(H_2C_2O_4)$ is a dibasic acid as well as a good reducing agent while KHC_2O_4 is an amphoteric salt in addition to being a good reducing agent. A 3.0 g sample containing KHC_2O_4 , oxalic acid dihydrate $(H_2C_2O_4.2H_2O)$ and some inert impurity was dissolved in water and diluted to 100 mL and finally analyzed. 0.228 g CaC_2O_4 is precipitated by 10 mL of the solution with $CaCl_2$ in NH_4OH . Answer the following question based on the information provided (Molar mass K = 39, C = 12 and O = 16) – A 10 mL portion of the above solution

required 7.8 mL of a 0.05 M H_2SO_4 solution to reach the end point. What is the mass percentage of KHC_2O_4 in the original sample?

- (A) 28%
- (B) 33%
- (C) 48%
- (D) 60%

Ans. (B)

Sol. When titrated against H₂SO₄, from the sample of H₂C₂O₄.2H₂O, KHC₂O₄, only KHC₂O₄ would react.

- \therefore m. eq. of H₂SO₄ = m. eq. of KHC₂O₄
- \Rightarrow 7.8×0.05×2 = (moles)_{KHC₂O₄}×1
- \Rightarrow (moles) $_{KHC_2O_4} = 0.78$ m moles
- \Rightarrow wt. of KHC₂O₄ = 99.84 mg (in 10 ml)

In 100 ml, wt. of KHC2O4 ≈ 1000 mg.

Mass % of KHC₂O₄ =
$$\frac{1}{3}$$
×100 = 33.3%

Mass % of KHCO₄ = 33%

13. Match the column

Column-I

- (A) Sn^{+2} + MnO_4^- (acidic)
- (p) Amount of oxidant available decides the number of electrons transfer
- (B) $H_2C_2O_4 + MnO_4^-$ (acidic)
- (q) Amount of reductant available decides the number of electrons transfer
- (C) $S_2O_3^{-2} + I_2$ 7.2 mole 3.6 mole
- (r) Number of electrons involved per mole of oxidant > Number of electrons involved per mole of reductant
- (D) $Fe^{+2} + Cr_2O_7^{-2}$ (acidic)
- (s) Number of electrons involved per mole of oxidant < Number of

electrons involved per mole of reductant.

Ans. ((A) - p, r; (B) - q, r; (C) - p, q, r; (D) - q, r)

Sol. Consider option D:

Balancing

$$6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O_7^{2-}$$

Given 9.2 mol Fe^{2+} , 1.6 mol $Cr_2O_7^{2-}$ (6 mol Fe^{2+} requires 1 mol $Cr_2O_7^{2-}$)

 $LR = Fe^{2+}$

.. No of e transfer is decided by Fe²⁺, i.e., reductant

Also, n-fac of Cr₂O₇²⁻ > n-fac of Fe2+

- .. No of e involved per mol of Cr₂O₇²⁻ (oxidant) is greater than Fe²⁺ (reductant)
- **14.** Given two mixtures:
 - I) NaOH + Na₂CO₃
 - II) NaHCO₃ + Na₂CO₃

100 ml of mixture I required 'W' and 'X' ml of 1 M HCl in separate titrations using phenolphthalein and Methyl orange indicators. While 100 ml of mixture II required 'Y' and 'Z' ml of same HCl solution in separate titration using same indicators.

Column I (Substance)

Column II (Molarity in solution)

(A) Na₂CO₃ in mixture I

(P) $(2w - x) \times 10^{-2}$

(Q) $(z - 2y) \times 10^{-2}$

(C) NaOH in mixture I

- (R) $y \times 10^{-2}$
- (D) NaHCO₃ in mixture II
- (S) $(x w) \times 10^{-2}$

Titration-I: end pt. using phenolphthalein

w ml HCl used

Reactions:

Titration-II: End point using methyl orange

x ml HCl used

Reactions:

$$\Rightarrow$$
 (x - w) × 1 × 1 = M_{NaHCO₃} × 100 = M_{Na₂CO₃} × 100

$$\Rightarrow \qquad M_{\text{Na}_2\text{CO}_3} = \frac{x - w}{100}$$

Volume of HCl for neutralization of NaOH

$$= w - (x - w)$$

$$= (2w - x) ml$$

$$1 \times (2w - x) = 100 \times MNaOH$$

$$M_{\text{NaOH}} = \frac{2w - x}{100}$$

Mixture-II: NaHCO₃ + Na₂CO₃

Titration-I y ml HCl used (phenolphthalein)

Titration-II: z ml HCl used (methyl orange)

$$NaHCO_3 + HCI \rightarrow NaCI + CO_2 + H_2O$$

From titration-1

Eq of Na_2CO_3 = Eq of HCl

$$\Rightarrow$$
 $M_{Na_3CO_3} \times 100 = y \times 1$

$$M_{Na_2CO_3} = \frac{y}{100}$$

From titration-2

Amount of HCI required for neutralization of NaHCO₃ in mixture II} = z - 2y

Eq of HCI = Eq of NaHCO₃

$$\implies \qquad z - 2y \times 1 = M_{\text{NaHCO}_3} \times 100$$

$$\Rightarrow$$
 $M_{NaHCO_2} = z - 2y/100$

15. Match the following

Column I

Column II

(A)
$$P_2H_4 \rightarrow PH_3 + P_4H_2$$

(P)
$$E = \frac{3M}{4}$$

(B)
$$I_2 \rightarrow I^- + IO_3^-$$

(Q)
$$E = \frac{3M}{5}$$

(C)
$$MnO_4^- + Mn^{2+} + H_2O \rightarrow Mn_3O_4 + H^+$$

(R)
$$E = \frac{15M}{26}$$

(D)
$$H_3PO_2 \rightarrow PH_3 + H_3PO_3$$

(S)
$$E = \frac{5M}{6}$$

Ans. A - S; B - Q; C - R; D - P

Sol. 1

MULTIPLE CHOICE QUESTIONS

- **16.** To a 25 ml H₂O₂ solution excess acidified solution of Kl was added. The iodine liberated 20 ml of 0.3 N sodium thiosulphate solution. Use these data to choose the correct statements from the following :
 - (A) The weight of H₂O₂ present in 25 ml solution is 0.102 g
 - (B) The molarity of H₂O₂ solution is 0.12 M
 - (C) The weight of H₂O₂ present in 1 L of the solution is 0.816 g
 - (D) The volume strength of H₂O₂ is 1.344 L

Ans. (ABD)

Sol. No. of equivalents of
$$S_2O_3^2 = 20 \times 0.3 \times 10^{-3}$$

$$= 6 \times 10^{-3} \text{ eq}.$$

No. of equivalents of I_2 produced = 6×10^{-3} eq.

No. of equivalents of $H_2O_2 = 6 \times 10^{-3}$ eq.

Wt of H_2O_2 present in 25 ml of solution = $6 \times 10^{-3} \times 17$

(: Eq. wt
$$H_2O_2 = 17$$
)

$$= 0.102 g$$

Statement (A) is correct.

Wt of
$$H_2O_2$$
 in 1L of the solution =
$$\frac{0.102 \times 1000}{25}$$

$$= 4.08 g$$

Statement (C) is wrong.

$$\therefore$$
 molarity of H₂O₂ solution = $\frac{4.08}{34}$ = 0.12 M

Statement (B) is correct.

$$2H_2O_2 \longrightarrow 2H_2O + O_2$$

Volume of
$$O_2$$
 at NTP = 0.06 × 22.4 lit

17. Given following series of reactions:

(I)
$$NH_3 + O_2 \rightarrow NO + H_2O$$

(II) NO +
$$O_2 \rightarrow NO_2$$

(III)
$$NO_2 + H_2O \rightarrow HNO_3 + HNO_2$$

(IV)
$$HNO_2 \rightarrow HNO_3 + NO + H_2O$$

Select the correct option(s):

- (A) Moles of HNO₃ obtained is half of moles of Ammonia used if HNO₂ is not used to produce HNO₃ by reaction (IV)
- (B) $\frac{100}{6}$ % more HNO₃ will be produced if HNO₂ is used to produce HNO₃ by reaction (IV) than if HNO₂ is not used to produce HNO₃ by reaction (IV)
- (C) If HNO₂ is used to produce HNO₃ then $\frac{1}{4}$ th of total HNO₃ is produced by reaction (IV)
- (D) Moles of NO produced in reaction (IV) is 50% of moles of total HNO₃ produced.

(ACD) Ans.

Sol. (a)
$$2NH_3 + \frac{7}{2}O_2 \rightarrow HNO_3 + HNO_2 + 2H_2O$$
 (up to reaction III)

Moles of HNO3 obtained is half of moles of Ammonia used.

(b)
$$3HNO_2 \rightarrow HNO_3 + 2NO + H_2O$$

Suppose 1 mole of NH₃ is taken initially.

It makes
$$\frac{1}{2}$$
HNO₃ & $\frac{1}{2}$ HNO₂ till reaction III.

But now
$$\frac{1}{2}$$
 HNO₂ makes of $\frac{1}{6}$ HNO₃ in reaction IV.

So, HNO₃ formed is
$$\frac{1}{2} + \frac{1}{6} = \frac{2}{3}$$
 mole

% increase =
$$\frac{\frac{1}{6}}{\frac{1}{2}} \times 100 = \frac{100}{3}$$
% (c) is correct

- (c) is correct
- (d) Moles of NO produced = $\frac{1}{2} \times \frac{2}{3} = \frac{1}{3}$ moles

$$\% = \frac{\frac{1}{3}}{\frac{2}{3}} \times 100 = 50\%$$

- 18. One gram of carbonate of Alkaline Earth metal was dissolved in 25 ml of Normal HCl. The resulting liquid required 50 ml of $\frac{N}{10}$ caustic soda solution to neutralize it completely. Then which of the following are correct?
 - (A) Eq. wt of Metallic carbonate = 50
- (B) Eq. wt of Metal = 20

(C) Eq. wt of Metal = 3

(D) Eq. wt of Metallic carbonate = 40

Ans. (AB)

Sol.
$$MCO_3 + 2HCI \rightarrow MCI_2 + CO_2 + H_2O$$

1 gm 1 N, 25 ml

Excess HCI (left out) reacted with 50 ml, $\frac{N}{10}$ caustic soda (NaOH)

Eq. of HCl left = Eq. of NaOH

$$1 \times x = 50 \times \frac{N}{10} \Rightarrow x = 5mI$$

Amount of HCI reacting with MCO₃ = 20 ml

Eq. of MCO₃ = Eq. of HCI

$$\frac{\text{wt}}{\text{eq wt}}(\text{of MCO}_3) = 20 \times 10^{-3} \times 1$$

$$\Rightarrow \frac{1gm}{Eq. wt} = \frac{20}{1000}$$

$$\Rightarrow$$
 Eq. wt of MCO₃ = $\frac{1000}{20}$ = 50

n-factor of $MCO_3 = 2$

mol. wt. of $MCO_3 = 100$

- \Rightarrow atomic wt. of M + 12 + 3(16) = 100
- ⇒ atomic wt. of metal = 40 gm
- \Rightarrow Eq. wt. of metal = $\frac{40}{2}$ = 20 (n factor of metal = 2)
- 19. Identify intramolecular redox reactions but not disproportionation reactions
 - (A) $(NH_4)_2 Cr_2 O \rightarrow N_2 + Cr_2 O_3 + H_2 O$
 - (B) $NH_4NO_3 \rightarrow N_2O + 2H_2O$
 - (C) $2KCIO_3 \rightarrow 2KCI + 3O_2$
 - (D) $PCl_5 \xrightarrow{\Delta} PCl_3 + Cl_2$

Ans. (ABCD)

Sol. (a)
$$(NH_4)_2 Cr_2^{+6} Cr_2 O_7 \rightarrow N_2 + Cr_2^{+3} O_3 + H_2 O_3$$

Nitrogen → reduced

 $Cr \rightarrow oxidised$

Intramolecular redox.

(b)
$$NH_4 NO_3 \rightarrow N_2O + 2H_2O$$

One N is oxidized

One N is reduced

Not disproportionation but redox.

(c)
$$2KCIO_3 \rightarrow 2KCI+O_2$$

 $C \rightarrow reduced$

 $O \rightarrow oxidised$

: Intramolecular redox

(d)
$$PCI_5^{+5} \rightarrow PCI_3 + CI_2^{0}$$

 $P \rightarrow reduced$

 $C \rightarrow oxidised$

:. Intramolecular redox

- 20. A 150 ml mixture of CO and CO₂ is passed through a tube containing excess of red-hot charcoal. The volume become 200 ml due to reaction CO₂ (g) + C (s) \rightarrow 2CO(g)
 - (a) Mole percent of CO₂ in the original mixture is 50.
 - (b) Mole fraction of CO in the original mixture is 0.66.
 - (c) The original mixture contains 50 ml of CO₂.
 - (d) The original mixture contains 50 ml of CO.

Ans. (BC)

Sol. 150 ml CO and CO₂ mixture

Say
$$CO_2 \rightarrow x ml$$

$$CO \rightarrow (150 - x) \text{ ml}$$

$$CO2 + C \rightarrow 2CO$$

x ml
$$CO_2 \rightarrow 2x$$
 ml CO

Total volume after reaction = 200 ml (given)

$$\therefore$$
 200 = 150 - x + 2x

$$\Rightarrow$$
 x = 50 ml

$$\therefore \qquad \text{CO}_2 \rightarrow 50 \text{ ml}, \ \frac{0.05}{22.4} \text{mol}$$

CO 100
$$\rightarrow$$
 ml, $\frac{0.1}{22.4}$ mol

Mole fraction of CO =
$$\frac{\frac{0.1}{22.4}}{\frac{0.05}{22.4} + \frac{0.1}{22.4}} = \frac{0.1}{0.15} \approx 0.667$$

NUMERIC ANSWER TYPE

21. To 100 ml of 5 M NaOH solution (density 1.2 g/ml) were added 200 ml of another NaOH solution which has a density of 1.5 g/ml and contains 20 mass percent of NaOH. What will be the volume of the gas (at STP) in litres liberated when aluminium reacts with this (final) solution. The reaction is AI + NaOH + $H_2O \rightarrow NaAIO_2 + H_2$ (At. wt. Na = 23, 0 = 16, H = 1)

Ans. (67.2)

Sol. 100 ml of 5 M NaOH soln

Moles
$$\Rightarrow$$
 M × V = $\frac{100 \times 5}{1000}$ = 0.5 moles from solution 1

From second solution

mass = mass%*density × volume

Mass = 20% of density × volume

moles =
$$\frac{20}{100} \times \frac{200 \times 1.5}{40} = 1.5$$
 moles

Total moles of NaOH = 2 moles

According to the balanced equation

$$AI + NaOH + H_2O \rightarrow NaAIO_2 + \frac{3}{2}H_2$$

1 moles NaOH $\rightarrow \frac{3}{2}H_2$ moles

- ٠. 2 moles \rightarrow 3 moles of H₂
- ٠. Volume at STP = $3 \times 22.4 = 67.2 L$
- 22. 10 g sample of bleaching powder was dissolved in water to make one litre solution. To this solution, 35 mL of 1.0 M Mohr salt solution was added containing enough H₂SO₄. After the reaction was complete, the excess Mohr salt required 30 mL of 0.1 M KMnO₄ for oxidation. Find the approximate % of available Cl₂.
- Ans. (7.1%)
- Sol. M eq of Mohr salt = $35 \times 1 \times 1 = 35$

M eq of KMnO₄ = M eq of excess Mohr's salt = $30 \times 0.1 \times 5 = 15$

M eq of Mohr's salt reacted with bleaching powder = 35-15 = 20

M eq of $Cl_2 = 20$

Wt. of Cl₂ = 20 × 10⁻³ ×
$$\frac{71}{2}$$
 = 0.71 g

% of CI2 = 7.1%

23. 1 gm of a metal ion M^{x+} (atomic mass = 100) was treated with 3.00 gm of $N_2H_4.H_2O$ and CO₂(g) was passed through the mixture when entire metal got precipitated as a complex of formula $(N_2H_5)_m[M(N_2H_3COO)_n]$. One tenth of the volume of the filtrate after filtering off the precipitate required 20 ml of 0.1M KIO₃ solution in 6 M HCl.

$$IO_3^- + N_2H_4^- + 2H^+ + CI^- \longrightarrow ICI + 3H_2O + N_2$$

Find the value of (m + n).

- Ans. (4.00)
- $M^{x+} + N_2H_4.H_2O \xrightarrow{CO_2} (N_2H_5)_m [M(N_2H_3COO)_n] \downarrow$ Sol.

1gm 3 gm

After filtrate is removed, left out N₂H₄.H₂O is titrated against KIO₃

Total moles of N₂H₄ taken = Moles reacted with M^{x+} + Moles reacted with KIO₃

Total moles of N₂H₄.H₂O taken =
$$\frac{\text{wt}}{\text{mol wt}} = \frac{3}{50} = 0.06$$

Moles reacted with KIO₃

Eq of KIO_3 = Eq of $N_2H_2.H_2O$

$$^{+5}$$
 $^{-2}$ 10 3 + 10 10 10 + 10 10 + 10 + 10 + 10 + 10 + 10 + 10

$$\Rightarrow$$
 4 × 0.1 × 20 × 10⁻³ = moles × 4

moles = 0.002

But for titration only 1/10th volume is used

Thus V/10 volume is used.

Thus V/10 volume has 0.002 mol N2H2.H2O

V volume has = $0.002 \times 10 = 0.02$ mol \Rightarrow

$$\therefore$$
 0.06 = moles reacted with M^{x+} + 0.02

 \Rightarrow Moles reacted with M^{x+} = 0.04

$$M^{x+} + N_2H_4.H_2O \xrightarrow{CO_2} (N_2H_5)_m [M(N_2H_3COO)_n] \downarrow$$

Balancing: $M^{x+} + (m+n)N_2H_4 \xrightarrow{CO_2} (N_2H_5)_m [M(N_2H_3COO)_n]$

1 mol $M^{x+} \rightarrow (m + n)$ mol N_2H_4

$$\frac{1}{100}$$
 mol \rightarrow 0.04 mol

$$\Rightarrow$$
 0.04 = $\frac{m+n}{100}$ \Rightarrow m+n = 4

24.
$$pCu_2O + qMnO_4^- + rH_2O \rightarrow sMnO_2 + t Cu (OH)_2 u OH^-$$
. The value of $(p + q + r) - (s + t + u)$ is

Ans. (2.00)

Sol.
$$pCu_2O + qMnO_4^- + rH_2O \rightarrow sMnO_2 + tCu(OH)_2 + uOH^-$$

Balancing

$$3Cu_2O + 2MnO_4^- + 7H_2O \rightarrow 2MnO_2 + 6Cu(OH)_2 + 2OH^-$$

$$(p + q + r) - (s + t + v) = (3 + 2 + 7) - (2 + 6 + 2) = 2$$

SUBJECTIVE ANSWER TYPE

- 25. The density of a pure liquid (X_2) having molecular mass 70 is 3.5 gm/ml. If 2 ml of liquid contain 35 drops, then the number of mole atoms in 2 litre of liquid will be
- Sol. Mass of 2 litre liquid = 2000 × 3.5 = 7000 gm Number of moles = = 100 mole molecule = 200 gm atoms.
- What volume of liquid 'A' has same number of moles of 'A' as there are number of moles of 'B' in 80cm³ of liquid 'B'.

Given: [Density of A = 1.0×10^{-3} gm/mL; Density of B = 1.0×10^{-3} gm/mL Molecular mass of A and B liquids are 40 & 20 respectively]

Sol.
$$d = \frac{M}{V}$$
 $\therefore \frac{1.0 \times 10^{-3} \times V_A}{40} = \frac{80 \times 1.0 \times 10^{-3}}{20}$
 $V_A = 160$

- 27. At room temperature, the density of water is 1.0 g/ml and the density of ethanol is 0.789 g/ml. What volume of ethanol contains the same number of molecules as are present in 175 ml of water?
- **Ans.** 566.82 ml.
- **Sol.** Let the volume of ethanol containing the same number of molecules as are present in 175 ml of H₂O be V ml. As given ,

moles of C_2H_5OH in V ml = moles of H_2O in 175 ml

Now,
$$\frac{\text{wt.of } C_2H_5OH}{\text{mol.wt.of } C_2H_5OH} = \frac{\text{wt.of } H_2O}{\text{mol.wt.of } H_2O}$$

or,
$$\frac{0.789 \times V}{46} = \frac{1.0 \times 175}{18}$$

28. A fluorine disposal plant was constructed to carryout the reactions :

$$F_2$$
 + 2NaOH \longrightarrow O_2 + 2NaF + H_2 O

As the plant operated, excess lime was added to bring about complete precipitation of the fluoride as CaF₂. Over a period of operation, 1900 kg of fluorine was fed into a plant and 10,000 kg of lime was required. What was the percentage utilisation of lime ? [At mass F = 19], [Lime : CaO]

28 % Ans.

Sol.
$$F_2 + 2NaOH \longrightarrow \frac{1}{2} O_2 + 2NaF + H_2O$$
Mole 50×10^3 $2[50 \times 10^3]$

$$2NaF + CaO + H_2O \longrightarrow CaF_2 + 2 NaOH$$

$$2 \times [50 \times 10^3] \quad 50 \times 10^3 \text{ Mole}$$
Weight of lime (CaO) = $50 \times 10^3 \times 56$

= 2800 kg.

Feed amount of lime = 10,000

% Utilisation =
$$\frac{2800}{10.000} \times 100 = 28\%$$

- 29. Two beakers A and B contain distilled water each. In beaker A, 100 g of NaNO₃ is dissolved and in B, 100 g of NH₂CO NH₂ is dissolved, so that the total volume in each of the beakers now becomes 500 ml respectively. What will be the molarity with respect to NaNO3 and NH2CONH2 each when the two solutions are mixed. (Given At. mass Na = 23) (Assume no reaction between NaNO₃ and NH₂CONH₂).
- Ans. = 1.175 M, = 1.66 M
- Sol. mol mass of NaNO₃ = 85 g, mol mass NH₂CONH₂ = 60 g molarity of NaNO₃ in Beaker A = 2.35 M and molarity of NH₂CO NH₃ in Beaker B = 3.33 M

When mixed final molarity
$$M_{final} = \frac{M_1V_1 + M_2V_2}{V_1 + V_2}$$

Hence
$$M_{final}$$
 of NaNO₃² = $\frac{35 \times 500 \pm 0}{500 + 500} = 1.176 \text{ M}$

$$M_{\text{final}} \text{ of NH}_2 \text{CO NH}_2 = \frac{3.33 \times 500 + 0}{500 + 500} = 1.66 \text{ M}$$

 $M_{NaNO_3} = \frac{Total moles}{volume in litres} = \frac{100/85}{1} = 1.176 M$

$$M_{NH_2CONH_2} = \frac{100/60}{1} = 1.67 M.$$

30.
$$A_2 + 2B_2 \rightarrow A_2B_4; \frac{3}{2}A_2 + 2B_2 \rightarrow A_3B_4.$$
 of real gurus

Two substance A₂ & B₂ react in the above manner. When A₂ is limited it gives A₂B₄ in xcess gives A₃B₄. A₂B₄ can be converted to A₃B₄ when reacted with A₂. Using this information calculate the composition of the final mixture when the mentioned amount of A2 & B2 are taken

- (a) 4 moles A₂ & 4 moles B₂
- (b) 1/2 moles A₂ & 2 moles B₂
- (c) 1.25 moles A₂ & 2 moles B₂

Ans. (a)
$$A_3B_4 = 2 \& A_2 = 1$$
 (b) $A_2B_4 = 0.5 \& B_2$

(c)
$$A_2B_4 = 0.5 & A_3B_4 = 0.5$$

Ans. (a)
$$A_3B_4 = 2 & A_2 = 1$$
 (b) $A_2B_4 = 0.5 & B_2 = 1$ (c) $A_2B_4 = 0.5 & A_3B_4 = 0.5$ Sol. (a) $A_3B_4 = 2 & A_2 = 1$; (b) $A_2B_4 = 0.5 & B_2 = 1$; (c) $A_2B_4 = 0.5 & A_3B_4 = 0.5$

(c)
$$A_2B_4 = 0.5 \& A_3B_4 = 0.5$$

$$A_2 + 2B_2 \rightarrow A_2B4$$
(i)

$$\frac{3}{2}A_2 + 3B_2 \rightarrow A_3B_4$$
(ii)

Also, A₃B₄ can be produced if A₂B₄ is reacted with A₂.

i.e.,
$$\frac{1}{2}A_2 + A_2B_4 \rightarrow A_3B_4$$
....(iii)

(a) 4 moles of A2 & 4 moles of B2.

Reaction 1 says 2B₂ requires 1A₂,

4B₂ would require 2A₂ to produce 2A₂B₄ & 2A₂ would leave out.

Now in reaction 3, $2A_2B_4$ would react with $1A_2$ to produce 2 of A_3B_4 and 1 mole of A_2 would leave out. (b) 0.5 moles of A_2 & 2 moles of B_2 .

Reaction 1 says 2 B₂ required 1 A₂,

0.5 A₂B₄ would be generated and 1 B₂ would leave out.

Since A₂ is completely consumed no further reaction will occur.

(c)
$$\frac{5}{4}$$
 moles of A₂ & 2 moles of B₂. $\left(\frac{5}{4} \Rightarrow 1.25\right)$

Reaction 1 says 2B₂ requires 1A₂,

1 of A_2B_4 will form and 0.25 or $\frac{1}{4}$ of A_2 will be left out.

Now in reaction 3, 0.5 A_2B_4 would react with $\frac{1}{4}A_2$ to produce 0.5 of A_3B_4 and 0.5 moles of A_2B_3 would leave out.

Uranium is isolated from its ore by dissolving it as UO2 (NO3)2 and separating it as solid 31. UO₂(C₂O₄). xH₂O. A 1.0 g sample of ore on treatment with nitric acid yielded 1.48 g UO₂ (NO₃)₂ which on further treatment with 0.4 g Na₂C₂O₄ yielded 1.23 g UO₂ (C₂O₄). xH₂O. Determine weight percentage of uranium in the original sample and x.

(89.4, 3)Ans.

Sol. Mass of U in sample =
$$\frac{1.48 \times 238}{394} = 0.894g$$

Mass of % of U = 89.4%

$$UO_2(NO_3)_2$$
 + $Na_2C_2O_4$

+
$$xH_2O \rightarrow UO_2(C_2O_4).xH_2O$$

3.756 mmol 2.985 mmol 2.985 mmol

Limiting reagent

Molecular weight of the pdt =
$$\frac{1.239}{2.985} \times 1000 = 412 \text{gmol}^{-1}$$

In
$$UO_2(C_2O_4).xH_2O = 412$$
 mol. Wt., it must have $x = 3$

- 32. A sample of fuming sulphuric acid containing H₂SO₄, SO₃ and SO₂ weighing 1.00 g is found to require 23.47 mL of 1.00 M alkali (NaOH) for neutralization. A separate sample shows the presence of 1.50% SO₂. Find the percentage of "free" SO₃, H₂SO₄ and "combined" SO₃ in the sample.
 - (A) 1 (B) 1 (C) 1 (D) 1

Ans. $(H_2SO_4 = 35.38\%, Free SO_3 = 63.1\%, combined SO_3 = 28.89\%)$

Sol. Let
$$H_2SO_4 = a$$
, $SO_3 = b$. $SO_2 = c$ (in grams)
 $a + b + c = 1$ g(given)
Also, $SO2 = 1.5\%$ i.e., 0.015 g
∴ $a + b = 0.985$ g
 $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4$
 $\frac{a}{98}$ moles
 $SO_2 + 2NaOH \rightarrow Na_2SO_4 + H_2O$
 $\frac{b}{80}$
 $SO_2 + 2NaOH \rightarrow Na_2SO_3 + H_2O$
 $\frac{0.015}{64}$

Since molarity is given, i.e., moles are given

$$\therefore \frac{a}{98} + \frac{b}{80} + \frac{0.015}{64} = 23.47 \times 10^{-3}$$

$$a + b = 0.985 \text{ After solving}$$

$$a(H_2SO_4) = 0.35 \text{ g} \Rightarrow 35\%$$

$$b(SO_3) = 0.633\text{g} \Rightarrow 63\%$$

$$Total SO_3 = \frac{0.3514}{98} \times 80 = 0.2868\text{g}$$