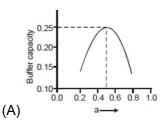
CHEMISTRY

TARGET: JEE Advanced - 2023

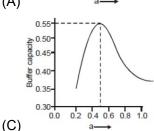
CAPS - 7

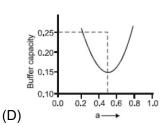
Ionic Equilibrium

1. At what molar concentration of HCl will its aqueous solution have an [H⁺] to which equal contributions come from HCl and H₂O.


(A)
$$\sqrt{60} \times 10^{-7} \,\mathrm{M}$$


(B)
$$\sqrt{50} \times 10^{-8} \,\text{M}$$


(B)
$$\sqrt{50} \times 10^{-8} \,\text{M}$$
 (C) $\sqrt{40} \times 10^{-9} \,\text{M}$ (D) $\sqrt{30} \times 10^{-8} \,\text{M}$


(D)
$$\sqrt{30} \times 10^{-8} \,\text{M}$$

2. A buffer solution is prepared by mixing 'a' mole of CH₃COONa and 'b' moles of CH₃COOH into water to make 1 L buffer solution such that (a + b) = 1. If the instantaneous (differential) buffer capacity of this buffer solution is plotted against moles of salt CH₃COONa (a) then the plot obtained will be (to the scale) approximately. (As shown in figure in options)

3. Pure water is added into the following solutions causing a 10% increase in volume of each. The greatest % change in pH would be observed in which case (a), (b), (c) or (d)?

(A) 0.1 M NaHCO₃

- (B) 0.2 M NaOH
- (C) $0.3 \text{ M NH}_3 0.2 \text{ M NH}_4^+ \text{ system}$
- (D) 0.4 M CH₃COONH₄

Liquid NH₃ dissociation to a slight extent. At a certain temp, itself dissociation constant K_{SD (NH₂)} 4. = 10^{-30} . The number of NH₄⁺ ions are present per 100 cm³ of pure liquid are:

- (A) 10^{-15}
- (B) 6.022×10^8
- (C) 6.022×10^7
- (D) 6.022×10^6

20 mL of 0.1 M weak acid HA ($K_a = 10^{-5}$) is mixed with solution of 10 mL of 0.3 M HCl and 10 5. mL of 0.1 M NaOH. Find the value of $\frac{A^-}{[HA]+[A^-]}$ in the resulting solution:

- (A) 2×10^{-4}
- (B) 2×10^{-3}
- (C) 2×10^{-3}
- (D) 0.05

- 6. Which of the following expression for α of a monoacidic base (BOH) in aqueous solution at appreciable concentration is not correct?
 - (A) $100 \times \sqrt{\frac{K_b}{a}}$

- (B) $10^{P_{OH}-P_{Kb}}$ (C) $\frac{K_w[H^+]}{K_b + K_w}$ (D) $\frac{K_b}{K_b + [OH^-]}$
- The simultaneous solubility of AgCN (K_{sp} = 2.5 × 10^{-16}) and AgCl (K_{sp} = 1.6 × 10^{-10}) in 1.0 M 7. NH₃ (aq) are respectively: [Given: $K_f \left[Ag(NH_3)_2^+ \right] = 10^7$]
 - (A) $0.037,5.78 \times 10^{+8}$ (B) 5.78×10^{-8} , 0.037 (C) 0.04, 6.25×10^{-8} (D) $1.58,1.26 \times 10^{-5}$
- 8. The Al(OH)₃ is involved in the following two equilibria,

$$Al(OH)_3(s) \rightleftharpoons Al^{3+}(aq.) + 30H^{-}(aq.);K_{sp}$$

$$Al(OH)_3(s) + OH^-(aq.) \rightleftharpoons Al(OH)_4^-(aq.);K_C$$

Which of the following relationship is correct at which solubility is minimum?

(A) $\left[OH^{-}\right] = \left(\frac{K_{sp}}{K}\right)^{1/3}$

(B) $\left[OH^{-}\right] = \left(\frac{K_{c}}{K}\right)^{1/4}$

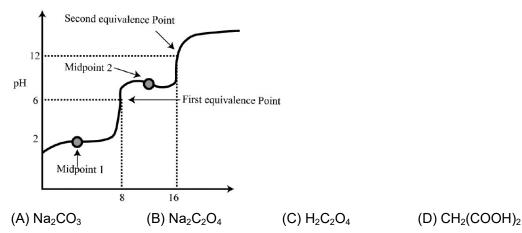
(C) $\left[OH^{-}\right] = \sqrt{\left(\frac{K_{sp}}{K_{-}}\right)^{1/4}}$

(D) None of these

MULTIPLE CHOICE QUESTIONS

- If K_a,K_a and K_a be the first, second and third ionization constant of H₃PO₄ and 9. $K_{_{a_{\circ}}} >> K_{_{a_{\circ}}} >> K_{_{a_{\eta}}}$ which is/are correct :
 - (A) $\left[H^{+}\right] = \sqrt{K_{a}\left[H_{3}PO_{4}\right]}$

(B) $\left[H^{+}\right] = \left[HPO_{4}^{2-}\right]$


(C) $K_{a_0} = \lceil HPO_4^{2-} \rceil$

- (D) $\lceil HPO_4^{2-} \rceil = \lceil PO_4^{3-} \rceil$
- 10. Which of the following mixtures constitute a buffer?
 - (A) HCOOH + HCOONa
- (B) Na₂CO₃ + NaHCO₃

(C) NaCl + HCl

- (D) $NH_4CI + (NH_4)_2SO_4$
- 11. Which of the following statements is/are correct?
 - (A) The conjugate acid of NH₂ is NH₃
 - (B) Solubility product constant increases with increase in concentration of ions
 - (C) On diluting a buffer solution pH change is negligible
 - (D) In alkakine buffer solution, If some HCI is added, it's [OH-] will increase
- 12. Formic acid is a weak acid and hydrochloric acid is a strong acid. It follows that the:
 - (A) [OH-] of 0.01 M HCI (aq.) will be less than that of 0.01 M HCOOH (aq.)
 - (B) solution containing 0.1 M NaOH(aq.) and 0.1 M HCOONa(aq.) is a buffer solution
 - (C) pH of 10⁻⁹ M HCl (aq.) will be approximately 7 at 25°C
 - (D) pH of a solution formed by mixing equimolar quantities of HCOOH and HCI will be less than that of a similar solution formed from HCOOH and HCOONa

13. A weak acid (or base) is titrated against a strong base (or acid), volume v of strong base (or acid) is plotted against pH of the solution (as shown in figure). The weak electrolyte (i.e., acid or base) could be

- 14. Which of the following statement(s) is/are correct about the ionic product of water
 - (A) K_i (ionization constant of water) < K_w (ionic product of water)
 - (B) $pK_i > pK_w$
 - (C) At 25°C, $K_i = 1.8 \times 10^{-14}$
 - (D) Ionic product of water at 10°C is 10⁻¹⁴
- **15.** H_2A is a weak diprotic acid. If the pH of 0.1M H_2A solution is 3 and concentration of A^{2-} is 10^{-12} at 25°C.

Select correct statement(s)?

- (A) $\left\lceil H^{_{^{+}}} \right\rceil_{_{total}} pprox \left\lceil H^{_{^{+}}} \right\rceil$ from first step of ionization of acid H_2A
- (B) Concentration of OH⁻ in solution is 10⁻³ M
- (C) The value of ${\rm K}_{\rm a_1}$ is nearly 10^{-5}
- (D) $pK_{a_2} = pK_{a_1} = 9$
- **16.** 0.01 M NH₄Cl (aq.) solution at 25°C has:
 - (A) $[Cl^{-}(aq.)] < 10^{-2} M$

(B) $\left[NH_{4}^{+}(aq.) < 10^{-2} M \right]$

(C) pOH > 7

(D) $[H^+] > 10^{-7} M$

COMPREHENSION #1 (FOR Q. 17)

17. Potash alum is $KAI(SO_4)_2 \cdot 12H_2O$. As a strong electrolyte, it is 100 % dissociated into K^+ , AI^{3+} and SO_4^{2-} . The solution is acidic because of the hydrolysis of AI^{3+} , but not so acidic as might be expected, because the SO_4^{2-} can sponge up some of the H_3O^+ by forming HSO_4^{--} .

Given a solution made by dissolving 11.85 gm of KAI(SO_4)₂·12H₂O in enough water to make 1000 cm³ of solution. What is [H₃O⁺] of the solution if Both AI³⁺ and SO_4 ²⁻ are hydrolysing.

First hydrolysis constant for Al^{3+} is 1.4 × 10^{-5}

Acid dissociation constant for HSO_4^- in water is 1.25×10^{-2}

- (A) $2.93 \times 10^{-4} \text{ M}$
- (B) 0.0114 M
- (C) $5.43 \times 10^{-6} \text{ M}$
- (D) None of these

18. Match the column

Column I (pH of resultant solution)

- (A) 200 ml of H₂SO₄ solution (specific gravity 1.225 containing 25% H₂SO₄ by weight) + 800 ml of 0.525 M strong triacidic base X(OH)₃
- (B) 50 ml of 0.1 M HCO₃⁻ + 50 ml of 0.8 M CO₃²⁻ $(H_2CO_3; K_{a_1} = 4 \times 10^{-7}, K_{a_2} = 2 \times 10^{-11})$
- (C) 50 ml of 0.2 M HA (aq) (Ka = 10^{-5}) + 50 ml of 0.1 M HCl (aq) + 100 ml of 0.13 M NaOH (aq)

Column II (Exist between Colour transition range of an indicator)

- (P) Phenol Red (6.8 to 8.4)
- (Q) Propyl red (4.6 to 6.4)
- (R) Phenolphthalein (8.3 to 10.1)
- (S) Malachite green (11.4 to 13)

SUBJECTIVE ANSWER TYPE

19. An NH₄⁺ – NH₃ buffer is supposed to keep the pH of the solution constant within 0.3 pH unit during the reaction.

CH₃COOCH₃ (aq.) + 2H₂O (aq.) \rightarrow CH₃COO – (aq.) + H₃O⁺ (aq.) + CH₃OH (aq.) If this solution had initial concentrations: [NH₄⁺]₀ = 0.1 M, [NH₃]₀ = 0.06 M, [CH₃COOCH₃]₀ = 0.02 M. What would be the initial and final pH of the solution? Is this a satisfactory buffer? [Kb(NH₃) = 1.8 × 10⁻⁵, log 2 = 0.3, log 3 = 0.48].

- **20.** A solution of 0.1 M Cl⁻, 0.1 M Br⁻ and 0.1 M l⁻ solid AgNO₃ is gradually added to this solution. If the addition of AgNO₃ does not change the volume. Answer the following:
 - (i) What conc. of Ag⁺ ions will be required to start precipitation of each of the three ions.
 - (ii) Which ion will precipitate first
 - (iii) What will be the conc. of this ion when the second ion start precipitating.
 - (iv) What will be the conc. of both ions when the third ion start precipitating.

Given:
$$K_{sp}$$
 (AgCl) = 1.7 × 10⁻¹⁰, K_{sp} (AgBr) = 5 × 10⁻¹³, K_{sp} (AgI) = 8.5 × 10⁻¹⁷.

- **21.** Calculate the solubility of AgCN in a buffer solution of pH = 3. Neglect any complexation. Take $K_{sp}(AgCN) = 3.2 \times 10^{-16}$, $K_a(HCN) = 6.4 \times 10^{-10}$.
- 22. If 0.00050 mol NaHCO₃ is added to 1 litre of a buffered solution at pH 8.00, how much material will exist in each of the three forms H_2CO_3 , HCO_3^- and CO_3^{2-} ? For H_2CO_3 , $K_1 = 5 \times 10^{-7}$, $K_2 = 5 \times 10^{-13}$.
- **23.** Equilibrium constant for the acid ionization of Fe^{3+} to $Fe(OH)^{+2}$ and H^{+} is 6.5×10^{-3} . What is the max. pH, which could be used so that at least 95% of the total Fe^{3+} in a dilute solution exists as Fe^{3+} ?
- 24. Predict whether or not AgCl will be precipitated from a solution which is 0.02 M in NaCl and 0.05 M in KAg(CN)₂. Given K_{diss} (Ag(CN)₂) = 4.0×10⁻¹⁹ M² and K_{sp} (AgCl) = 2.8 × 10⁻¹⁰ M².