

CHEMISTRY

TARGET: JEE Advanced - 2023

CAPS-2 CHEMICAL BONDING PERIODIC PROPERTIES

SINGLE CHOICE QUESTIONS

1.	The xenon compounds that are iso-structural with IBr ₂ ⁻ and BrO ₃ ⁻ respectively are		respectively are		
	(A) linear XeF ₂ and p	yramidal XeO₃	(B) bent XeF ₂ and py	ramidal XeO₃	
	(C) bent XeF ₂ and pla	anar XeO₃	(D) linear XeF ₂ and to	etrahedral XeO ₃	
2.	The d-orbital particip	ating in the hybridiza	ition of the central at	om of the polar molecule of	
	K_3IO_x is (Where x is a	n odd number less th	an or equal to 5)		
	(A) d_{z^2}	(B) $d_{x^2-y^2}$	(C) d _{xy}	(D) d_{zx}	
3.	Incorrect order of ion	c size is:			
	(a) $La^{3+} > Gd^{3+} > Eu^3$	+ > Lu ³⁺	(b) $V^{2+} > V^{3+} > V^{4+} > V^{4+}$	V ⁵⁺	
	(c) $TI^+ > In^+ > Sn^{2+} > In^+$	Sb ³⁺	(d) $K^+ > Sc^{3+} > V^{5+} >$	Mn ⁷⁺	
4.	Which of the following statements is incorrect?				
	(A) The seconds ioniz	zation energy of Sulph	ur is greater than that	of chlorine	
	(B) The third ionization energy of aluminium is greater than that of phosphorus				
	(C) The first ionization	n energy of aluminium	is approximately the s	ame as that of gallium	
	(D) The second ioniz	ation energy of boron	is greater than that of	carbon	
5 .	Statement-1: The c	rystal structures of l	NaHCO ₃ and KHCO ₃	, both show intermolecular	
	hydrogen bonding bu	t are different.			
	Statement-2: In NaH	CO_3 the HCO_3^- ions a	re linked together thro	ugh intermolecular hydrogen	
	bonds into an infinite chain, while in KHCO ₃ , HCO ₃ ions form dimeric anions through				
	intermolecular hydrog	gen bonds.			
	(A) STATEMENT-1 is	s true, STATEMENT-2	is true, and STATEM	ENT-2 is correct explanation	
	for STATEMENT-	1.			
	• •		Γ-2 is true, and ST.	ATEMENT-2 is not correct	
	explanation for S				
	• •	s true, STATEMENT-2			
	` ,	s false, STATEMENT-			
6.	Identify the species of	ontaining banana bon			
	(A) (BeH ₂) _n	(B) BF ₃	(C) (AICI ₃) ₂	(D) $(BeCl_2)_n$	
7.			having xz and yz two	nodal planes are involved in	
	hybridization of centr	al atom?			

(C) IF₇

(D) None of these

(B) CIF₄⁻

(A) $IO_2F_2^-$

8.	In which of the follo	wing cases C–C bond	length will be highest's	?	
	(A) CH ₃ – CF ₃	(B) $FCH_2 - CH_2F$	(C) $F_2CH - CHF_2$	(D) $CF_3 - CF_3$	
9.	Select the incorrect	statement about N ₂ F ₄	and N₂H₄		
			ctronegative fluorine	atoms, but d-orbital contraction	
	is not possible by H				
	• •	energy in N ₂ F ₄ is more	_	y in N ₂ H ₄ .	
		ength in N ₂ F ₄ is more the			
	Choose the correct	length in N ₂ F ₄ is less the	ian that of in $N_2\Pi_4$.		
	(A) I, II and III	(B) I and III	(C) II and IV	(D) II and III	
10.	Which order are co	, ,	(0) a	(<i>b</i>) ii diid iii	
-		: BeSO ₄ < MgSO ₄ < Ca	aSO ₄ < SrSO ₄ < BaSC)4	
	(II) Basic nature: Zr	nO > BeO > MgO > Ca0	0		
	(III) Solubility in wat	ter: LiOH > NaOH > KC)H > RbOH > CsOH		
	(IV) Melting point: N	laCl > KCl > RbCl > Cs	sCI > LiCI		
	(A) (I), (IV)	(B) (I), (II) and (IV)	(C) (II), (III)	(D) All correct	
11.	The correct solubilit				
	(I) CaCO ₃ > SrCO ₃	> BaCO ₃	(II) $Li_2CO_3 < Na_2CC$	$O_3 < K_2CO_3$	
	(III) $K_2CO_3 < Rb_2CO_3$	$O_3 < Cs_2CO_3$	(IV) $Na_2CO_3 > K_2CO_3$	$O_3 > Rb_2CO_3$	
	(A) II, IV	(B) I, IV	(C) II, III, IV	(D) I, II, III	
12.	From the statement	s given below,			
	(I) Ionisation energy	y of oxygen molecule is	more than that of nitr	ogen molecule	
	(II) Electron affinity of nitrogen molecule is higher than that of oxygen molecule				
	(III) Electronegativit	y order of carbon atom	atoms in the hydrocarbons - $C_2H_2 > C_2H_4 > C_2H_6$		
	(IV) N ₂ is as stable	e as CO as bond order of both the species is 3 as per MOT.			
	(A) I and II are corre	ect.	(B) III and IV are co	orrect.	
	(C) only III is correct	;t.	(D) II and III is corre	ect.	
мии	TPLE CHOICE QUES	STIONS			
13.		dization(s) is/are obser	ved in phosphazene F	P ₂ NCl ₇ ?	
	(A) sp ³	(B) sp ³ d	(C) sp ²	(D) sp^3d^2	
14.	() (ing statements is/are co	` , .	(-)	
		_			
				sulphate $(S_2O_3^{2-})$ ion are +4	
		r the average oxidation	•		
	(B) The reason for	· Ka ₂ <<< Ka ₁ for perc	oxymonosulphuric acid	d is, intramolecular H–bonding	
	in the anion of	acid after first ionisation	n.		
	(C) NH ₃ has a high	ner boiling point than Sb	oH ₃ , because of H–bo	nding between NH ₃ molecules.	
	(D) Among HCl, H	IBr and HI, HI is the s	strongest acid while I	HCI is the weakest acid while	
	. ,		•	hile HOI is the weakest acid.	

15. Which of the following statement(s) is/are correct? (A) Ethyne gas is more soluble in acetone than in water. (B) CH₃F is more polar than CD₃F due to deuterium (D) being less electronegative than hydrogen (H). (C) Silyl isocyanate (SiH₃NCO) is linear in shape while methyl isocyanate (CH₃NCO) is bent in shape. (D) All of these 16. The sum of IE₁ and IE₂, IE₃ and IE₄ for element P and Q are given below: $IE_1 + IE_2$ $IE_3 + IE_4$ (P) 2.45 8.82 6.11 (Q) 2.85 Then according to the given information, the correct statement(s) is/are: (A) P²⁺ is more stable than Q²⁺ (B) P²⁺ is less stable than Q²⁺ (C) P⁴⁺ is more stable than Q⁴⁺ (D) P⁴⁺ is less stable than Q⁴⁺ Which of the following is incorrect order of property as indicated? 17. (A) $Na^+ < F^- < O^{2-} < Ne < Ar$: Atomic size (B) Br < Se < As < Ge : Metallic character (C) Na < Al < Si < Mg : Ionisation energy (D) I < Br < Cl < F Electron affinity **COMPREHENSION: PARAGRAPH** When hybridisation involving d-orbitals are considered then all the d-orbitals are not degenerate, rather $d_{v^2-v^2}, d_{z^2}$ and d_{xy}, d_{yz}, d_{zx} form two different sets of orbitals and orbitals of apppropriate set is involved in the hybridisation. In sp³d² hybridisation, which sets of d-orbitals is involved? 18. (C) d_{yy}, d_{yz} (A) $d_{x^2-v^2}, d_{z^2}$ (B) d_{-2}, d_{xy} (D) $d_{v^2-v^2}, d_{xy}$ In sp³d³ hybridisation, which orbitals are involved? 19. (B) d_{xy} , d_{yz} , d_{zx} (C) $d_{y^2-y^2}$, d_{xy} , d_{xz} (D) $d_{x_2}, d_{y_7}, d_{y_8}$ (A) $d_{x^2-y^2}, d_{z^2}, d_{xy}$ Molecule having trigonal bipyramidal geometry and sp³d hybridisation, d-orbitals involved is: 20. $(A) d_{xy}$ (B) d_{vz} (D) d₋₂ (C) d_{y2 y2} 21. Which of the following orbitals can not undergo hybridisation amongst themselves.

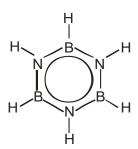
(III) 3d, 4s & 4p

(C) I, II, & IV

(IV) 3s, 3p & 4s

(D) II & IV

(II) 3d, 4d


(B) II & III

(I) 3d, 4s

(A) only II

INTEGER ANSWER TYPE

22. The structure of B₃N₃H₆ is as follows

How may derivatice structures of B₃N₃H₄X₂ can be derived from the basic structure, by the replacement of two hydrogen atoms?

- (A) 2
- (B)3
- (C)4
- (D) 5

- 23. Consider the following orders:
 - (i) CH₄ < CCl₄ < CF₄ : Electronegativity of central 'C'-atom
 - (ii) Mq2+ $< K^+ < S^{2-} < Se^{2-}$: Ionic radius
 - (iii) Ni > Pd > Pt : Ionisation energy
 - (iv) $As^{5+} > Sb^{5+} > Bi^{5+}$: Stable oxidation state
 - (v) LiF > NaF > KF > RbF : Lattice energy
 - (vi) $Li^+ < Mg^{2+} < Al^{3+}$: Hydration energy
 - (vii) CI > Br > F > I : Electron affinity
 - (Viii) BeCl₂ < AlCl₃ < SiCl₄ : Lewis acidic character

How many of the following statements are correct?

24. At high temperatures Sulphur vapour is predominantly in the form of S2 (gas) molecules. If the molecular orbitals for third row diatomic molecules (homonuclear) are analogous to those for second-row molecules. Answer the following questions by putting correct number in the boxes provided at the bottom.

- P: The number of unpaired electrons in S_2 .
- Q: The bond order of S_2 .
- R: The number of π bond(s) in S₂.
- S: The bond order of S_2^{2-} , disulphide ion formed by the gain of two electrons.
- 25. Consider the following combination of atomic orbitals:

Combining orbitals (internuclear axis)

- (i) s + p_x (x)
- (ii) $d_{xy} + d_{xy}(x)$ (iii) $d_{yz} + p_z(z)$ (iv) s + s(z)

- (v) $d_{yz} + d_{yz}(x)$ (vi) $p_y + p_y + (y)$ (vii) $d_{z^2} + d_{z^2}(z)$ (viii) $d_{xy} + d_{xy}(z)$
- $(ix) p_x + p_x (y)$
- $(x) s + p_2(x)$

Then calculate value of "a² + b² + 2cd". (where a = σ M.O.; b = π M.O.; c = δ M.O.; c = Nonbonding M.O.)

26. Consider the following five groups (According to modern periodic table) of elements with their increasing order of atomic numbers:

Group
$$1 \rightarrow A$$
, B, C, D, E Group $2 \rightarrow F$, G, H, I, J

Group
$$13 \rightarrow K$$
, L, M, N, O Group $15 \rightarrow P$, Q, R, S, T

Group
$$17 \rightarrow U, V, W, X, Y$$

If first and last element of each group belongs to 2nd and 6th period respectively and Z represents the carbonate ion (CO_3^{2-}) , then consider the following orders.

- (i) O⁺ > H²⁺; Polarizing power
- (ii) $T^{3+} > S^{3+} > R^{3+}$; Stability of cation
- (iii) $U^{-}(aq.) > V^{-}(aq.) > W^{-}(aq.) > X^{-}(aq.)$; Size
- (iv) $JV_2 < IV_2 < GV_2 < LV_3$; Covalent character
- (v) GZ > IZ > JZ; Thermal stability
- (vi) AV > BV > CV > DV > EV; Thermal stability
- (vii) $C_3P > B_3P > A_3P$; Lattice energy
- (viii) KU₃ < KV₃ < KW₃ < KX₃; Melting point

Then calculate value of $|p - q|^2$, here p and q are correct and incorrect orders in the given eight orders respectively.

27. Match the following:

Column-I (Compounds)	Column-II (Characteristics)
(A) H ₄ SiO ₄	(P) Back bond
(B) H ₂ SeO ₄	(Q) Intermolecular hydrogen bond
(C) H ₃ BO ₃	(R) Hypo valent compound
(D) H_2NBF_2	(S) Proton donor acid
	(T) Hypervalent compound

28. Match the column

Column-l	Column-II
(A) $H_2S_2O_5$	(P) Central atom is sp3 hybridized
(B) $H_6B_2O_7^{2-}$	(Q) M–O–M oxo linkage is present
(C) $H_4P_2O_6$	(R) M–O–M oxo linkage is absent
(D) H ₆ Si ₂ O ₇	(S) Non-planar

29. Match the column

Column-I

Elements (Electrons in K, L, M, N ...)

- (A) W(2, 8, 7)
- (B) X(2, 8, 18, 8)
- (C) Y(2, 8, 14, 2)
- (D) Z(2, 8, 18, 25, 8, 2)

Column-II

Statements

- (P) Paramagnetic
- (Q) 3rd group element
- (R) Last electron does not enter to valence shell
- (S) Reactive non-metal
- (T) Diamagnetic

SUBJECTIVE ANSWER TYPE

- **30.** Find number of $p\pi d\pi$ bonds in
 - (a) Disulphate
 - (b) triphosphate
 - (c) trimetaphosphate
 - (d) trimer of SO₃
 - (e) P₄O₁₀
 - (f) P_4O_6