

CHEMISTRY

TARGET: JEE Advanced - 2023

CAPS – 14 Haloalkanes and

Haloarenes

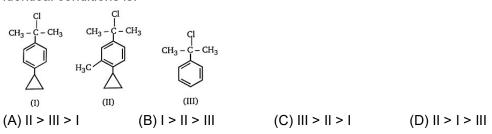
1. An organic compound A (C₇H₆Br₂) gives a pale yellow ppt with warm alc. AgNO₂ solution. A on treatment with dil. KMnO₄ gives a compound B(C₇H₅O₂Br). B on treatment with AgOH followed by heating with Br₂/CCl₄ gives a compound of which only two mono nitro isomers are possible. A upon treatment with LiAlH₄ gives C (C₇H₇Br).

$$C \xrightarrow{\text{Mg}} \xrightarrow{\text{I.HCHO}} \xrightarrow{\text{PCC}} X$$

The product 'X' would be

(A)
$$(B)$$
 (CH_3) (CH_3) (D) (D)

Which of the following products can be obtained from above reaction?


3.
$$(A)$$
 $CH_2 - OCH_3$ (B) CH_3O (C) CH_3 (D) All of these CH_3 CH_3

Product (B) is:

2.

(A)
$$A > B > C$$
 (B) $A > C > B$ (C) $B > C > A$ (C) $B > A > C$

4. The decreasing order of reactivity of the compounds given below towards solvolysis under identical conditions is:

5. OH
$$\xrightarrow{1.\text{One Eq. NaOH}}$$
 (A)

Product (A) is:

6.

(D) None of these

7.
$$\begin{array}{c}
C \\
1. \text{ NaNH}_2(2\text{eq.}) \\
2. \text{CH}_3 \text{CH}_2 - I \\
3. \text{ CH}_3 - I \\
4. \text{ H}_2/\text{Pd-BaSO}_4
\end{array}$$
 Product (X) is

(A)
$$CH_3CH_2$$
 (B) CH_3CH_2 OCH

(C)
$$CH_3$$
 (D) CH_3 $O-CH_2CH_3$

8. OTS OTS
$$\underbrace{\overset{\text{OTs}}{=}}_{\text{KOH}} \xrightarrow{\text{Product}}$$

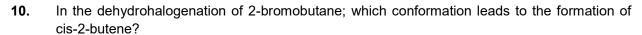
Product of above reaction will be:

$$(A) \qquad (B) \qquad (C) \qquad (D) \qquad (D)$$

Reaction (1)

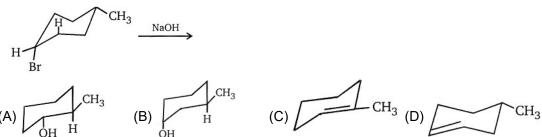
Reaction (2)

$$Alc. KOH \rightarrow (A) \text{ (major)}$$
 $Alc. KOH \rightarrow (B) \text{ (major)}$


Reaction (3)

 $Alc. KOH \rightarrow (B) \text{ (major)}$

Product obtained in above reactions (1), (2) & (3) is:


(A) A = B but C is different

- (B) A = C, but B is different
- (C) B = C, but A is different
- (D) A = B = C all product are identical

$$(A) \quad H \quad H \quad (B) \quad H \quad (CH_3) \quad (CH_3) \quad (CH_3) \quad (D) \quad H \quad (D) \quad H \quad (D) \quad$$

11. The E_2 product of the following reaction will be?

12. End product (D) in the given sequence is:

Br
$$\xrightarrow{\text{CH}_3\text{NHCH}_3}$$
 $\xrightarrow{\text{CH}_3\text{NHCH}_3}$ $\xrightarrow{\text{CH}_3\text{NHCH}_3}$ $\xrightarrow{\text{CH}_3\text{I}}$ $\xrightarrow{\text$

13.
$$CH_{3} \xrightarrow{C} \xrightarrow{C} \xrightarrow{C} CH_{3} \xrightarrow{x_{NaNH_{2}}} \xrightarrow{y_{CH_{3}I}} CH_{3} \xrightarrow{C} C = C - CH_{3}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Br \qquad Br$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Br \qquad Br$$

x and y mole consumed.

Value of x + y =

14.
$$(A)$$
 5 (B) 6 (B) 6

Major product of the reaction is

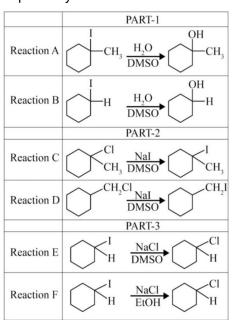
(A)
$$P_h$$
 (B) P_h (C) P_h (D) None of these P_h P_h P_h (A) P_h P_h

(C)7

(D) 8

Product (A) is

15.


(A)
$$\stackrel{\text{Br}}{\underset{CH_2-NH_2}{\bigoplus}}$$
 (B) $\stackrel{\text{CH}_2NH_2}{\underset{CH_2NH_2}{\bigoplus}}$ (C) $\stackrel{\text{Br}}{\underset{Br}{\bigoplus}}$ (D) $\stackrel{\text{E}}{\underset{Br}{\bigoplus}}$

16. In the given pair of alcohols, in which pair second alcohol is more reactive than first towards hydrogen bromide?

(A)
$$\stackrel{CH_3}{\longrightarrow}$$
 $\stackrel{OH}{\longrightarrow}$ and $\stackrel{CH-CH_3}{\longrightarrow}$ (B) $\stackrel{CH_3-CH-CH_2-CH_3}{\longrightarrow}$ and $\stackrel{CH_3-CH_2-CH_2-CH_3}{\bigcirc}$ $\stackrel{CH_3-CH-CH_2-CH_3}{\bigcirc}$ and $\stackrel{CH_3-CH_2-CH_2-CH_3}{\bigcirc}$ (D) $\stackrel{CH_3-CH-CH_2-CH_3}{\bigcirc}$ and $\stackrel{CH_3-CH-CH_2-CH_3}{\bigcirc}$ $\stackrel{CH_3-CH-CH_2-CH_3}{\bigcirc}$

17. Select which reaction from the following reaction pairs will occur faster. Part and Reaction, respectively are

OH

	PART-4
Reaction G	I NaN ₃ DMSO N ₃
Reaction H	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	PART-5
Reaction I	CH ₂ -Cl CH ₂ -I
Reaction J	$ \begin{array}{cccc} & & & & & & & & & & \\ & & & & & & & & &$

18. Match the List I (reaction) with List II (reaction intermediate) and select the correct answer using the codes given below the Lists.

List-I

List-II

(A)
$$CF_3 - CHCI_2 \xrightarrow{\text{alc.KOH}/\Delta} CF_2 = CCI_2$$

 CH_3

(p) Transition state

(q) Carbocation

(C)
$$CH_3 - CH_2 - Br \xrightarrow{alc.KOH} CH_2 = CH_2$$

(r) Carbanion

19. Match the following

List-I List-II

(A)
$$CH_3O$$
 CH_3O
 CH_3O

(B)
$$C$$
 CH_3 CH_2CH_2Br CH_3CH_2O CH_3CH_2OD

(Q) E2

$$(C) \xrightarrow{Br} Ph \xrightarrow{Ag_2O \atop moist}$$

(R) E1cb

(S) Ei

20. Match the column (I) and (II).

Column I	Column II
Reaction	Comment on product
CH ₃ — A →	P. Racemic mixture
$\begin{array}{ccc} A. & \text{OH} & & & \\ & CH_3 & & & \\ & & \Delta & & \end{array}$	Q. Major product consist of even number of α-hydrogen
B. OH	
$C.$ OH H^*	R. Will not undergo dehydration
D. OH A	S. Major product consist of odd number of α -hydrogen

21. Choose the one compound within each set that meets the indicated criterion :

Compound I

- A. The compound that reacts with alcoholic KOH to liberate Halide ion through substitution reaction
- B. The compound that cannot be prepared by a Williamson ether synthesis.
- C. The compound that gives an acidic solution when allowed to stand in aqueous ethanol.
- D. The ether that cleaves more rapidly in HI.

Compound II

$$\begin{array}{c} O_2N & \longleftarrow F \\ O_2N & \longleftarrow CH_3 \\ O_2 & \longleftarrow OC_2H_5 \\ O_2 & \longleftarrow OC_2H_5 \\ O_2 & \longleftarrow OC_2H_5 \\ O_3 & \longleftarrow OC_2H_5 \\ O_4 & \longleftarrow OC_2H_5 \\ O_5 & \longleftarrow OC_2H_5 \\ O_7 & \longleftarrow OC_2H_5 \\ O_8 & \longleftarrow OC_2H_5 \\ OC$$

- 22. A hydrocarbon C₈H₁₀ (A) on ozonolysis gives compound C₄H₆O₂ (B) only. The compound (B) can also be obtained from the alkyl bromide C₃H₅Br (C) upon treatment with magnesium in dry ether followed by CO₂ and acidification. Identify (A), (B) and (C) and also give equations for the reactions.
- 23. How many (x) moles of HI consumed?

$$O-Et$$
 $O-Et$

24. Sum of X + Y + Z + P =

S.

(a)
$$\xrightarrow{\text{alc. KOH}}$$
 (X) products

(b) $\xrightarrow{\text{Br}}$ $\xrightarrow{\text{alc. KOH}}$ (Y)

(c) $\xrightarrow{\text{Br}}$ $\xrightarrow{\text{CH}_3}$ $\xrightarrow{\text{H}}$ $\xrightarrow{\text{alc. KOH}}$ (P)

(d) CH_3 $\xrightarrow{\text{H}}$ $\xrightarrow{\text{Br}}$ $\xrightarrow{\text{P}}$