CAPS - 12

p-block (Group 15-18)

	IAKGEI : JEE	Advanced - 2023			
1.	Consider the following sequence of reaction.				
	$Na + NH_3(g) \rightarrow [X] \xrightarrow{N_2O} [Y] \xrightarrow{Heat} [Z]_{Gas,Pure}$				
	Identify [Z] gas:				
	(A) N ₂	(B) NH ₃	(C) O ₂	(D) H ₂	
2.	$A + H_2O \rightarrow B + HCI$				
	$B + H_2O \rightarrow C + HCI$				
	Compound (A), (B) and (C) can be respectively:				
	(A) PCI ₅ , POCI ₃ , H ₃ PO ₃		(B) PCI ₅ , POCI ₃ , H ₃ PO ₄		
	(C) SOCl ₂ , POCl ₃ , H ₃ PO ₃		(D) PCl ₃ , POCl ₃ , H	(D) PCI_3 , $POCI_3$, H_3PO_4	
3.	Which of the following statements are correct about the reaction between the copper meta and dilute HNO ₃ ?				
	(I) The principal reducing product is NO gas				
	(II) Cu metal is oxidized to Cu ²⁺ (aq) ion which is blue in colour.				
	(III) NO is paramagnetic and has one unpaired electron in antibonding molecular orbital				
	(IV) NO reacts with O ₂ to produce NO ₂ which is linear in shape				
	Choose the correct statements:				
	(A) I, II, III	(B) I, III	(C) II, IV	(D) All the above	
4.	In which of the following reaction product does not contain 'Peroxy' linkage?				
	(A) 2OF — Dimerisation →		(B) $H_4P_2O_8 \xrightarrow{-+H_2O}$		
	(C) $2Na \xrightarrow{\text{excess } O_2, \Lambda} \rightarrow$		(D) None of these		
5.	Which of the follow	ving halides cannot be	ng halides cannot be hydrolysed at room temperature?		
	I. TeF ₆	II. SF ₆	III. NCI ₃	IV. NF ₃	
	Choose the correct code:				
	(A) III and IV	(B) I, II and III	(C) I, II and IV	(D) II and IV	
6.	By which of the following methods, H ₂ O ₂ can't be synthesized?				
	(A) Lewis addition of ice cold H ₂ SO ₄ on BaO ₂				
	(B) Addition of ice cold H ₂ SO ₄ on PbO ₂				

(C) Aerial oxidation of 2-ethyl anthraquinol

(D) Electrolysis of (NH₄)₂SO₄ at a high current density

- Predict the correct product when Cl_2 passed through $H = \overset{18}{\text{O}} \overset{18}{\text{O}} H$ solution. 7.

 - (A) $H^+ + Cl^- + O_2$ (both oxygen having 18) (B) HOCl and HClO₂ (all oxygen having 18)
 - (C) HClO₄ and HCl (all oxygen having 18) (D) Cl₂O and H₂O (all oxygen having 18)
- 8. $Cl_2(g) + Ba(OH)_2 \rightarrow X(aq.) + BaCl_2 + H_2O$

$$X + H_2SO_4 \rightarrow Y + BaSO_4$$

$$Y \xrightarrow{\Delta, T > 365K} Z + H_2O + O_2$$

Y and Z are respectively:

- (A) HCIO₄, CIO₂
- (B) HClO₃, ClO₂
- (C) $HCIO_3$, CIO_6 (D) $HCIO_4$, CI_2O_7
- 9. Which is incorrectly written?
 - (A) $I_4O_9 \rightleftharpoons I^{3+} + 3IO_3^{-}$

(B) $I_2O_4 \rightleftharpoons IO^+ + IO_3^-$

(C) $CsBr_3 \rightleftharpoons Cs^+ + Br_3^-$

- (d) None of these
- 10. Most powerful reducing agent among the following is
 - (A) pyrophosphoric acid

- (B) hypophosphoric acid
- (C) hypophosphorous acid
- (D) orthophosphorous acid

MULTIPLE CHOICE QUESTIONS

- 11. Which of the following statement is true about NO₂ and ClO₂?
 - (A) Both are paramagnetic
 - (B) Both have a bent structure
 - (C) On cooling, both undergoes dimerization
 - (D) In both oxides, the central atom has an oxidation state +4
- 12. Select the incorrect order.
 - (A) He > Ar > Kr > Ne > Xe (abundance in air).
 - (B) He < Ne < Ar < Kr < Xe (boiling point).
 - (C) $XeF_6 > XeF_4 > XeF_2$ (melting point).
 - (D) $XeF_6 < XeF_4 < XeF_2$ (Xe F bond length).
- 13. Consider the following reactions:

$$A_x + yB_z \xrightarrow{limited supply of air} compound'P' \xrightarrow{+B_Z excess air} Compound'Q'$$

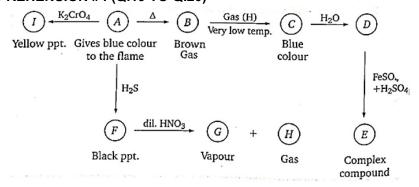
If atomic number of elements A and B are 15 and 8 respectively, then according to the given information the correct statement(s) is/are

- (A) (B-A-B) bond angle in compound 'Q' > (B-A-B) bond angle in compound 'P'
- (B) (A–B) bond length in compound 'Q' < (A–B) bond length in compound 'P'
- (C) Value of x + y + z is 9
- (D) Compound 'P' is P_2O_5 and compound 'Q' is P_4O_{10} .

- 14. In which of the following compound(s) terminal $(2C 2e^{-})$ bond and bridge bonds are lying in same plane:
 - (A) I_2CI_6
- (B) Be₂H₄
- (C) Solid BeCl₂
- (D) Ga₂H₆
- **15.** The compounds obtained by heating of orthophosphoric acid are:
 - (A) metaphosphoric acid

(B) pyrophosphoric acid

(C) P₄O₆


(D) P₄O₁₀

COMPREHENSION #1 (FOR Q.16 TO Q.18)

An inorganic iodide (A) on heating with a solution of KOH gives a gas (B) and a solution of a compound. The gas (B) on ignition in air gives a compound (C) and water. Compound (C) is :

- **16.** Select the correct statement from the following for the gas (B).
 - (A) Its solution in water does not decompose in presence of light.
 - (B) It can be prepared by the alkaline hydrolysis of white phosphorus.
 - (C) It is non-inflammable owing to the presence of P₂H₄.
 - (D) It can act as oxidising agent.
- **17.** The compound (C):
 - (A) has sp³ hybridisation of central atom(s) (B) has sixteen sigma bonds.
 - (C) is used as a dehydrating agent
- (D) all of these
- **18.** What is true about gas (B) and compound (C)?
 - (A) The oxidation number of central atom of gas (B) is + IV
 - (B) The gas (B) produces a black precipitate of metallic silver with silver nitrate solution.
 - (C) Compound (C) dissolves in water forming an acid which with sodium hydroxide forms three series of salts.
 - (D) (b) and (c) both

COMPREHENSION #4 (Q.19 TO Q.20)

19. Compound (D) + I^- + $H^+ \rightarrow Gas$

Evolved gas is similar to:

- (A) Gas-B
- (B) Gas-G
- (C) Gas-H
- (D) None

20. Yellow ppt. of compound (I) is insoluble in:

- (A) NaOH
- (B) CH₃COOH
- (C) dil. HNO₃
- (D) none

NUMRIC ANSWER TYPE

21. Choose total number of correct reactions.

- (i) When CuSO₄ solution reacts with NH₃, complex is formed.
- (ii) When CuSO₄ solution react with PH₃, complex is formed.
- (iii) $C_{12}H_{22}O_{11} \xrightarrow{\text{conc.H}_2SO_4} 2C + 11H_2O$
- (iv) $NH_3 + Cl_2 \xrightarrow{\Delta} NCl_4Cl + N_2$
- (V) $NH_3 + Cl_2 \xrightarrow{\Delta} NCl_3 + HCl$
- (vi) $HNO_3 + P_4O_{10} \xrightarrow{\Delta} HPO_3 + N_2O_5$
- (vii) $S + H_2SO_4 \xrightarrow{\Delta} SO_2 + H_2O$
- (viii) $SbF_5 + XeF_4 \rightarrow [SbF_4] [XeF_5]$
- (ix) $XeF_4 + O_2F_2 \rightarrow XeF_6 + O_2$

22. Consider the following orders:

- (1) $H_2SO_4 > H_2SO_3$: Boiling point
- (2) $H_2O > HF$: Extent of H-bond
- (3) $H_2O > H_2O_2$: Strength of H-bond
- (4) HF > HCl > HBr: Melting point
- (5) para-dichlorobenzene > ortho-dichlorobenzene: Boiling point
- (6) Ethylene glycol > Phenol: Viscosity
- (7) 1, 3-Dichlorobenzene > 1, 3, 5-Trichlorobenzene: Strength of molecular force
- (8) ortho-Hydroxy benzoic acid > para-Hydroxy benzoic acid: Solubility in water.

Then calculate value of $|x^2|$ (where 'x' is total number of correct orders.)

MATRIX MATCH TYPE

23. Match the reaction products listed in column-I with the particulars listed in column-II

Column-I

Column-II

(A) $XeF_2 + H_2O \longrightarrow$

(p) Redox reaction

(B) $XeF_4 + H_2O \longrightarrow$

(q) Disproportionation

(C) $XeF_6 + H_2O \longrightarrow$

(r) O₂ formation

(D) $XeO_3 + NaOH \longrightarrow$

- (s) Xe formation
- (t) Etching glass

24. Match the Following:

Column-I

(A) $P_4O_6 + H_2O(hot) \rightarrow$

(p) H₃PO₄

Column-II

(B) $P_A + NaOH \xrightarrow{\Delta} \rightarrow$

(q) PH₃

(C) $H_3PO_3 \xrightarrow{\Delta}$

(r) H₃PO₃

(D) $PH_{\lambda}I + NaOH \rightarrow$

- (s) $H_2PO_2^-$
- (A) (A- p, q; B- q, s; C- p, q; D- s)
- (B) (A-p, q; B-q, s; C-p, q; D-q)
- (C) (A-q, r; B-q; C-r, s; D-q)
- (D) (A-r, s; B-p, q; C-r; D-s)

25. Match the Following:

Column-I

Column-II

(A) Fluorine

(p) Affected by NaOH

(B) Chlorine

(q) Coloured

(C) Bromine

(r) Forming trihalide anion

(D) lodine

- (s) Forms only one oxo acid
- (A) (A-p, q, s; B-p, q, r; C-p, q, r; D-p, q, r) (B) (A-p, q, r; B-p, s; C-p, q, r; D-p, q, r)
- (C) (A-q, s; B-r; C-q, r, s; D-p, q, r)
- (D) (A-q, s; B-p, q, r; C-p, q, r; D-p, q, r)
- 26. Entries of Column-I are to be matched with entries of Column-II. Each entry of Column-I may have the matching with one or more than one entries of Column-II

Column-I

Column-II

- (A) POCI₃
- P. Oxyacid formed during hydrolysis undergoes Tautomeric change
- (B) SOF₂
- Q. Oxidation state of central atom does not change during hydrolysis
- (C) XeOF₄
- R. Complete as well as partial hydrolysis is possible
- (D) $H_2S_2O_8$
- S. Hydrolysed product reacts with glass
- T. Hybridization of central atom in the final product remains same as in the substrate on hydrolysis
- (A) $A \rightarrow P$, Q, R, T; $B \rightarrow P$, S; $C \rightarrow P$, Q, S; $D \rightarrow R$, S, T
- (B) $A \rightarrow Q$, T; $B \rightarrow P$, Q, S, T; $C \rightarrow Q$, R, S; $D \rightarrow Q$, R, T
- (C) $A \rightarrow Q$, R, S, T; $B \rightarrow R$, S, T; $C \rightarrow Q$, R, S; $D \rightarrow P$, S, T
- (D) $A \rightarrow R$, S, T; $B \rightarrow P$, Q; $C \rightarrow R$, S; $D \rightarrow P$, Q, R

SUBJECTIVE ANSWER TYPE

- 27. Colourless salt (A) + NaOH (excess) —[△] gas (B) giving white fumes with HCl + alkaline solution (C)
 - $(C) + Zn \longrightarrow gas (B)$
 - (A) $\stackrel{\triangle}{\longrightarrow}$ gas (D) + liquid (E)
 - D, E Both triatomic
 - Identify (A, B, C, D) and (E)