PART-2: SETS, RELATION, MATHEMATICAL REASONING, PMI, STATISTICS SETS

EXERCISE - I

CHECK YOUR GRASP

- 1. $A \cap (A \cup B)' = A \cap (A' \cap B')$ $(\because (A \cup B)' = A' \cap B')$ $=(A \cap A') \cap B'$ (by associative law) $= \phi \cap B'$ $(\because A \cap A' = \phi)$ $= \phi$
- 2. It is obvious.
- **4.** From De' morgan's law, $(A \cap B)' = A' \cup B'$.
- 5. $B' = \{1, 2, 3, 4, 5, 8, 9, 10\}$ $\therefore A \cap B' = \{1, 2, 5\} \cap \{1, 2, 3, 4, 5, 8, 9, 10\}$ $= \{1, 2, 5\} = A$
- 6. Let $x \in A \Rightarrow x \in A \cup B$, $[\because A \subseteq A \cup B]$ $\Rightarrow x \in A \cap B$, $[\because A \cup B = A \cap B]$ $\Rightarrow x \in A \text{ and } x \in B \Rightarrow x \in B$, $\therefore A \subseteq B$

- Similarly, $x \in B \Rightarrow x \in A$, $B \subseteq A$ Now $A \subseteq B$, $B \subseteq A \Rightarrow A = B$.
- **7.** It is obvious.
- 11. $A \cap B \subseteq A$. Hence $A \cup (A \cap B) = A$.
- 12. $n(A \cup B) = n(A) + n(B) n(A \cap B)$.
- 15. Null set is the subset of all given sets.
- **16.** Since $\frac{1}{y} \neq 0, \frac{1}{y} \neq 2, \frac{1}{y} \neq \frac{-2}{3}, \quad [\because y \in N]$
 - $\therefore \frac{1}{y} \text{ can be 1,} \qquad [\because y \text{ can be 1}]$
- 17. It is fundamental concept.

RELATIONS

EXERCISE - I

CHECK YOUR GRASP

- 2. Since $x \not< x$, therefore R is not reflexive. Also $x \le y$ does not imply that $y \le x$, So R is not symmetric. Let xRy and yRz. Then, $x \le y$ and $y \le z \Rightarrow x \le z$ i.e., xRz. Hence R is transitive.
- 3. For any $x \in R$, we have $x x + \sqrt{2} = \sqrt{2}$ an irrational number.
 - \Rightarrow xRx for all x. So, R is reflexive.

R is not symmetric, because $\sqrt{2}$ R1 and 1R $\sqrt{2}$, R is not transitive also because $\sqrt{2}$ R1 and 1R2 $\sqrt{2}$ but 2R2 $\sqrt{2}$.

- **4.** R_4 is not a relation from X to Y, because (7, 9) \in R_4 but (7, 9) \notin X Y.
- 5. Here $\alpha R\beta \Leftrightarrow \alpha \perp \beta$:: $\alpha \perp \beta \Leftrightarrow \beta \perp \alpha$ Hence, R is symmetric.
- **7.** It is obvious.
- 13. We have (a, b) R (a, b) for all (a, b) \in N N Since a + b = b + a. Hence, R is reflexive. R is symmetric for we have (a,b)R(c,d) \Rightarrow a+d=b+c

 \Rightarrow d + a = b + c \Rightarrow c + b = d + a \Rightarrow (c,d) R(a,b)

Hence R is symmetric

Then by definition of R, we have

$$a + d = b + c$$
 and $c + f = d + e$,

hence by addition, we get

$$a + d + c + f = b + c + d + e \text{ or } a + f = b + e$$

Hence, (a, b) R (e, f)

Thus, (a, b) R(c, d) and (c, d) R(e, f) \Rightarrow (a, b) R(e,f).

Hence R is transitive.

14. For $(a, b), (c, d) \in N$

(a, b)
$$R(c, d) \Rightarrow ad(b + c) = bc(a + d)$$

Reflexive : Since $ab(b + a) = ba(a + b) \forall ab \in N$,

 \therefore (a, b)R(a, b), \therefore R is reflexive.

Symmetric: For (a, b), $(c, d) \in N$ N, let (a,b)R(c,d)

$$\therefore$$
 ad (b + c) = bc(a + d) \Rightarrow bc(a + d) = ad(b + c)

$$\Rightarrow$$
 cb(d + a) = da(c + b) \Rightarrow (c, d)R(a, b)

∴ R is symmetric

Transitive: For (a, b), (c, d), $(e, f) \in N$

Let (a, b)R(c, d), (c, d)R(e, f)

$$\therefore ad(b + c) = bc(a + d), cf(d + e) = de(c + f)$$

$$\Rightarrow$$
 adb + adc = bca + bcd ... (i)

and
$$cfd + cfe = dec + def$$
 ... (ii)

(i) ef + (ii) ab gives,

$$adbef + adcef + cfdab + cefab$$

$$= bcaef + bcdef + decab + defab$$

$$\Rightarrow$$
 adc $f(b + e) = bcde(a + f)$

$$\Rightarrow$$
 af(b + e) = be(a + f)

$$\Rightarrow$$
 (a, b)R(e, f).

: R is transitive. Hence R is an equivalence relation

- 15. Here R is a relation A to B defined by 'x is greater then y'
 - \therefore R = {(2, 1); (3, 1)}. Hence, range of R = {1}.
- **16.** Here $\ell_1 R \ell_2$, ℓ_1 is parallel to ℓ_2 and ℓ_2 is parallel to ℓ_1 , so it is symmetric.

Clearly, it is also reflexive and transitive. Hence it is equivalence relation.

- **20.** Let $(a, b) \in R$ Then, $(a, b) \in R \Rightarrow (b,a) \in R^{-1}$, [by def or R^{-1}] $\Rightarrow (b, a) \in R$, [: $R = R^{-1}$], So R is symmetric.
- **23.** R is reflexive if it contains (1, 1) (2, 2) (3, 3) $\because (1, 2) \in R, (2, 3) \in R$ $\therefore R \text{ is symmetric if } (2, 1), (3, 2) \in R$

Now, $R = \{(1, 1), (2, 2), (3, 3), (2, 1), (3, 2), (2, 3), (1, 2)\}$

R will be transitive if (3, 1); $(1, 3) \in R$. Thus, R becomes and equivalence relation by adding (1, 1) (2, 2) (3, 3) (2, 1), (3, 2), (1, 3), (1, 2). Hence, the total number of ordered pairs is 7.

24. Obviously, the relation is not reflexive and transitive but it is symmetric, because

$$x^2 + v^2 = 1 \implies v^2 + x^2 = 1$$

- **25.** Clearly, the relation is symmetric but it is neither reflexive nor transitive.
- 26. It is obvious

- **27.** We have, $R = \{(1,3); (1,5); (2,3); (2,5); (3,5); (4,5)\}$ $R^{-1} = \{(3, 1); (5, 1); (3, 2); (5, 2); (5, 3); (5, 4)\}$ Hence $ROR^{-1} = \{(3, 3); (3, 5); (5, 3); (5, 5)\}$
- 28. It is obvious
- 29. Given R, and S are relations on set A.

$$\therefore \ R \subseteq A \quad A \ \text{and} \ S \subseteq A \quad A \Rightarrow R \cap S \subseteq A \quad A$$

$$\Rightarrow R \cap S \ \text{is also a relation on } A.$$

Reflexivity: Let a be an arbitrary element of A. Then $a \in A \Rightarrow (a, a) \in R$ [: R and S are reflexive] and $(a, a) \in S$

$$\Rightarrow$$
 (a, a) \in R \cap S

Thus, $(a, a) \in R \cap S$ for all $a \in A$.

So, $R \cap S$ is a reflexive relation on A.

Symmetry: Let a, b \in A such that (a, b) \in R \cap S.

Then, (a, b) \in R \cap S \Rightarrow (a, b) \in R and (a, b) \in S \Rightarrow (b, a) \in R and (b, a) \in S

[∵ R and S are symmetric]

$$\Rightarrow$$
 (b, a) \in R \cap S

Thus, $(a, b) \in R \cap S \Rightarrow (b, a) \in R \cap S$ for all $(a, b) \in R \cap S$.

So, $R \cap S$ is symmetric on A.

Transitivity : Let a,b,c \in A such that (a,b) \in R \cap S and (b, c) \in R \cap S. Then (a, b) \in R \cap S and (b, c) \in R \cap S

$$\Rightarrow$$
 {((a, b) \in R and (a, b) \in S)}

and
$$\{((b, c) \in R \text{ and } (b, c) \in S)\}$$

$$\Rightarrow$$
 {(a, b) \in R, (b, c) \in R} and {(a,b) \in S, (b, c) \in S}

$$\Rightarrow$$
 (a, c) \in R and (a, c) \in S

$$\begin{cases} :: R \text{ and } S \text{ transitive, } SO \\ (a, b) \in R \text{ and } (b, c) \in R \Rightarrow (a, c) \in R \\ (a, b) \in S \text{ and } (b, c) \in S \Rightarrow (a, c) \in S \end{cases}$$

$$\Rightarrow$$
 (a, c) \in R \cap S

Thus, (a, b)
$$\in$$
 R \cap S and (b, c) \in R \cap S

 \Rightarrow (a, c) \in R \cap S. So R \cap S is transitive on A

Hence, R is an equivalence relation on A.

1. Given $A = \{1, 2, 3, 4\}$

$$R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$$

 $(2, 3) \in R$ but $(3, 2) \notin R$. Hence R is not symmetric.

R is not reflexive as $(1, 1) \notin R$.

R is not a function as $(2, 4) \in R$ and $(2, 3) \in R$.

R is not transitive as $(1, 3) \in R$ and $(3, 1) \in R$ but $(1, 1) \notin R$.

Here (3, 3), (6, 6), (9, 9), (12, 12), [Reflexive];
 (3, 6), (6, 12), (3, 12), [Transitive].

Hence, reflexive and transitive only.

3. Relation $R = \{(x, y) \in W \mid W \mid \text{ the words } x \text{ and } y \text{ have at least one letter in common} \}$

R is reflexive as every word has the same letters with itself.

R is symmetric also

But R is not transitive

For example, BOLD is related BAT

BAT is releated to APE

But BOLD has no letter in common with APE.

4. For R, $xRy \Rightarrow x = wy$

For reflexive

 $xRx \Rightarrow x = wx$

Which is true then w = 1

For symmetric

consider x = 0, $y \neq 0$

$$xRy \Rightarrow 0Ry \Rightarrow 0 = wy$$

which is true when w = 0

Now

$$vRx \Rightarrow vR0 \Rightarrow v = w = 0$$

There is no rational value of w

for which
$$y = w = 0$$

Hence relation is not symmetric and hence not an equivalence relation

Now for S

For reflexive

$$\frac{m}{n}$$
 S $\frac{m}{n}$ \Rightarrow mn = nm

which is true

For symmetric

Let
$$\frac{m}{n} S \frac{m}{n} \Rightarrow qm = np$$

$$\frac{p}{q}$$
 S $\frac{m}{n}$ \Rightarrow pn = mq

which is true

Relation is symmetric

For transitive

Let
$$\frac{m}{n} S \frac{p}{q} \Rightarrow qm = pn$$
 ... (1)

$$\frac{p}{q} S \frac{r}{s} \Rightarrow ps = rq$$
 ... (2)

From Equation (1) and equation (2)

$$\Rightarrow$$
 ms = nr

$$\therefore \frac{m}{n} S \frac{r}{s}$$

S is transitive

.. S is equivalence.