SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

1. 50 mL of 0.1 M solution of a salt reacted with 25 mL of 0.1 M solution of sodium sulphite. The half reaction for the oxidation of sulphite ion is :-

$$\mathrm{SO}_3^{2-}(\mathrm{aq}) + \mathrm{H_2O} \ (\ell) \longrightarrow \mathrm{SO}_4^{2-} \ (\mathrm{aq}) + 2\mathrm{H^+}(\mathrm{aq}) + 2\mathrm{e^-}$$

If the oxidation number of metal in the salt was 3, what would be the new oxidation number of metal :

(A) zero

(B) 1

(C) 2

(D) 4

An element A in a compound ABD has oxidation number A^{n-} . It is oxidised by $Cr_2O_7^{2-}$ in acid medium. In 2. the experiment 1.68 10^{-3} moles of K₂Cr₂O₇ were used for 3.26 10^{-3} moles of ABD. The new oxidation number of A after oxidation is :-

(A) 3

(B) 3 - n

(C) n - 3

(D) +n

3. The incorrect order of decreasing oxidation number of S in compounds is :-

(A) $H_{2}S_{2}O_{7} > Na_{2}S_{4}O_{6} > Na_{2}S_{2}O_{3} > S_{8}$

(B) $H_{9}SO_{5} > H_{9}SO_{3} > SCl_{9} > H_{9}S$

(C) $SO_3 > SO_9 > H_9S > S_8$

(D) $H_{g}SO_{g} > SO_{g} > H_{g}S > H_{g}S_{g}O_{g}$

4. Which reaction does not represent autoredox or disproportionation :-

(A) $Cl_{2} + OH^{-} \longrightarrow Cl^{-} + ClO_{3}^{-} + H_{2}O$

(B) $2H_2O_2 \longrightarrow H_2O + O_2$

(C) $2Cu^{+} \longrightarrow Cu^{+2} + Cu$

(D) $(NH_4)_2Cr_2O_7 \longrightarrow N_9 + Cr_9O_3 + 4H_9O$

Match List-I (Compounds) with List-II (Oxidation states of nitrogen) and select answer using the codes given 5. below the lists :-

	List-I			List-II
(a)	NaN_3		1.	+ 5
(b)	N_2H_2		2.	+ 2
(c)	NO		3.	-1/3
(d)	N_2O_5		4.	-1
Code	: (a)	(b)	(c)	(d)
(A)	3	4	2	1
(B)	4	3	2	1
(C)	3	4	1	2
(D)	4	3	1	2

6. Which of the following is a redox reaction :-

(A) $2 \text{ CrO}_{4}^{2-} + 2H^{+} \rightarrow \text{ Cr}_{2}\text{O}_{7}^{2-} + \text{ H}_{2}\text{O}$

(B) $CuSO_4 + 4 NH_3 \rightarrow [Cu(NH_3)_4] SO_4$

(C) $\text{Na}_2\text{S}_2\text{O}_3 + \text{I}_2 \rightarrow \text{Na}_2\text{S}_4\text{O}_6 + \text{NaI}$

(D) $Cr_2O_7^{2-} + 2OH^- \rightarrow 2 CrO_4^{2-} + H_2O$

7. In which of the following reaction is there a change in the oxidation number of nitrogen atoms :-

(A) $2 \text{ NO}_2 \rightarrow \text{ N}_2\text{O}_4$

(B) $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$

(C) $N_2O_5 + H_2O \rightarrow 2HNO_3$

(D) none

8. In the reaction

 $xHI + yHNO_3 \longrightarrow NO + I_2 + H_2O$

(A) x = 3, y = 2

(B) x = 2, y = 3

(C) x = 6, y = 2 (D) x = 6, y = 1

9. For the redox reaction:

 $MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$

the correct stoichiometric coefficients of MnO_4^- , $C_2O_4^{\,2-}$ and H^+ are respectively

(A) 2,5,16

(B) 16,5,2

(C) 5,16,2

(D) 2,16,5

10.	Which of the following r	elations is incorrect :-		
	(A) 3 N Al ₂ (SO ₄) ₃ = 0.5 (C) 1 M H ₃ PO ₄ = 1/3 N		(B) 3 M H ₂ SO ₄ = 6 N H ₂ (D) 1 M Al ₂ (SO ₄) ₃ = 6 N	
11.	The mass of oxalic acid	crystals (H ₂ C ₂ O ₄ . 2H ₂ O) re	quired to prepare 50 mL o	f a 0.2 N solution is :-
	(A) 4.5 g	(B) 6.3 g	(C) 0.63 g	(D) 0.45 g
12.	125 mL of 63% (w/v) H resulting solution is :-	$_2C_2O_4$. $2H_2O$ is made to r	eact with 125 mL of a 40°	% (w/v) NaOH solution. The
	(A) neutral	(B) acidic	(C) strongly acidic	(D) alkaline
13.	A certain weight of pur		t completely with 200 mL	of an HCl solution to give
	(A) 0.05 N	(B) 0.1 N	(C) 1.0 N	(D) 0.2 N
14.				
14.	(A) 10 mL	(B) 30 mL		0.5 M Ba (OH) ₂ solution is :- (D) 60 mL
1 5			(C) 20 mL	
15.			n in acidic medium will be	$\ensuremath{\text{N}_{2}\text{H}_{4}}$ in acidic medium. The :-
	(A) $\frac{2}{5}V_1$	(B) $\frac{5}{2}V_1$	(C) 113 V ₁	(D) can't say
16.	If equal volumes of 0.1 M medium, then Fe^{2^+} oxidis	M KMnO $_4$ and 0.1 M K $_2$ Cr $_2$ sed will be :-	O ₇ solutions are allowed to	oxidise Fe^{2+} to Fe^{3+} in acidic
	(A) more by KMnO ₄		(B) more by K ₂ CrO ₇	
	(C) equal in both cases		(D) can't be determined	
17.	If 10 g of V_2O_5 is dissolved	ed in acid and is reduced to	o V^{2^+} by zinc metal, how m	any mole I_2 could be reduced
		if it is further oxidised to V		
	[Assume no change in st	ate of Zn^{2+} ions] (V = 51,	O = 16, I = 127):	
	(A) 0.11 mole of I_2	(B) 0.22 mole of $\rm I_2$	(C) 0.055 mole of $\rm I_2$	(D) 0.44 mole of I_2
18.	Given that 50.0 mL of Cl_2 (g) + $S_2O_3^{2-}$ \longrightarrow		nd 5 10^{-4} mole of Cl_2 real	act according to equation,
	Answer the following :	•		
(i)	The balanced molecular	equation is :		
	(A) $Cl_2 + H_2O + Na_2S_2O$ (C) $Cl_2 + S_2O_3^{2-} \longrightarrow SO_3^{2-}$		Cl (B) $Cl_2 + Na_2S_2O_3 \longrightarrow$ (D) none of these	2NaCl + Na ₂ SO ₄
(ii)		0.3^{2-} are in the above sampl		
(11)	(A) 0.00050	(B) 0.0025	(C) 0.01	(D) 0.02
(iii)			is sample for the above re	
(111)	(A) 0.001	(B) 0.080	(C) 0.020	(D) 0.010
(ir)			(C) 0.020	(D) 0.010
(iv)	What is the molarity of I	= -	(C) 0 020 M	(D) 0.010 M
1.0	(A) 0.080 M	(B) 0.040 M	(C) 0.020 M	(D) 0.010 M
19.		was dissolved in 100 mL so % of oxalate ion in salt is		90 mL of N/20 KMnO ₄ for
	(A) 33%	(B) 66%	(C) 70%	(D) 40%
20.	filtering and washing the to titrate it as. The percent	precipitate, it requires 40. entage of CaO in the samp	0 mL of 0.250 N KMnO $_4$ sle is :-	recipitated as CaC_2O_4 . After solution acidified with H_2SO_4
		$Mn^{2+} + CO_2 + 2H_2$		
	(A) 54 0 %	(B) 27 1 %	(C) 42 %	(D) 84 %

21.	In the reaction O_2 :-	on CrO ₅ + F	$H_2SO_4 \rightarrow Cr_2(SO_4)$	$(0_4)_3 + H_2O$	+ O ₂ one m	ole of (CrO ₅ will	liberat	e how	many m	noles of
	(A) 5/2		(B) 5/4		(C) 9/2			(D) 7	/2		
22.	absorbed in ${\rm AsO_4^{\ 3^-}} +$	Kl solution a $2H^+ + 2I^$	s boiled with example and titrated again $\longrightarrow AsO_3^{3-} + F$	inst 0.2 N I $I_2\text{O} + I_2$,	nyposolutior	n. Assun	ning the	reactio			olved is
			thiosulphate hyp (B) 38.4 mL	oo consume	(C) 24.7		oi As –		0.3 mI		
23.	to be reduce	e following s ed to Mn ²⁺ as	amples of reduc		is/are chem	ically ed		to 25	mL of	0.2 N	7
	(A) 25 mL o	of 0.2 M FeS	SO ₄ to be oxidize	ed to Fe ³⁺	(B) 50 r	mL of 0.	1 M H ₃	AsO ₃ to	be oxid	dized to	H_3 As O_4
	(C) 25 mL o	of 0.1 M H ₂ C	D_2 to be oxidized	d to H^{+} and	O ₂ (D) 25 r	mL of 0	.1 M Sr	Cl ₂ to	be oxic	dized to	Sn^{4+}
24.	Find the volume H_2O_2 solution		gth of $\mathrm{H_2O}_2$ solu	ıtion prepar	ed by mixin	g of 25	0 mL of	3N H	₂ O ₂ &	750 mL	of 1N
	(A) 1.5 V		(B) 8.4 V		(C) 5.6 V			(D) 1	1.2 V		
25.	25 mL of 0 following sta		solution is add true :-	ded to 50	mL of 0.20	M KM	nO ₄ in	acid so	olution	. Which	of the
	(A) 0.010 mole of oxygen is liberated(C) 0.030 g atom of oxygen gas is evolved			(B) 0.005 (D) 0.002			•		with K	MnO_4	
26.	Hydrogen peroxide in aqueous solution decomposes on warming to give oxygen according to the equation $2H_2O_2$ (aq) $\longrightarrow 2H_2O$ (ℓ) + O_2 (g)										
	Under conditions where 1 mole of gas occupies 24 dm 3 . 100 cm 3 of XM solution of H_2O_2 produces 3 dm 3 of O_2 . Thus X is :-										
	(A) 2.5		(B) 1		(C) 0.5			(D) 0	.25		
27.	Temporary hardness is due to HCO_3^- of Mg^{2^+} and Ca^{2^+} . It is removed by addition of CaO. $Ca(HCO_3)_2^+ CaO \rightarrow 2CaCO_3^+ + H_2^0$										
	Mass of CaC) required to	precipitate 2 g	CaCO ₃ is	:-						
	(A) 2.00		(B) 0.56 g		(C) 0.28 g	3		(D) 1	12 g		
28.	having norma	ality 5N. If b	nL of H_2O_2 solution of the (A) & bottlenme strength & i	e (B) mixed	& solution						
	(A) 13.6 "V"	& 41.285	g/L		(B) 11.2 "	'V" & 0	.68 g/L				
	(C) 5.6 "V"	& 0.68 g/L			(D) 5.6 "V	J" & 41	.285 g/	Ĺ			
CHECK	YOUR GRAS	P		ANSWER	KEY					EXERCIS	SE -1
Que.	1 2	3 4	5 6	7	8 9	10	11	12	13	14	15

CHEC	CHECK YOUR GRASP ANSWE							ER K	EY	EXERCISE -1				E -1	
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	С	В	D	D	Α	С	D	С	Α	С	С	Α	В	С	Α
Que.	16	17	18(i)	(ii)	(iii)	(iv)	19	20	21	22	23	24	25	26	27
Ans.	В	Α	А	А	Α	D	В	Α	D	Α	A,C,D	В	В	Α	В
Que.	28														
Ans.	Α														

EXERCISE-02 BRAIN TEASERS

1 mol of iron (Fe) reacts completely with 0.65 mol $\mathrm{O_2}$ to give a mixture of only FeO and $\mathrm{Fe_2O_3}$. Mole ratio

(C) 20 : 13

(D) none of these

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THEN ONE CORRECT ANSWERS)

1.

of ferrous oxide to ferric oxide is :-

(B) 4:3

 $(A) \ 3 : 2$

2.	The molar ratio of Fe in both ferrous and fe		$FeSO_4$ and $Fe_2(SO_4)_3$ ha	aving equal number of sulphate ion
	(A) 1 : 2	(B) 3 : 2	(C) 2 : 3	(D) can't be determined
3.	If a piece of iron gain has rusted is :-	s 10% of its weight due to	partial rusting into $\mathrm{Fe_2O}$	3. The percentage of total iron that
	(A) 23	(B) 13	(C) 23.3	(D) 25.67
4.	An ore of iron, Wusti Fe(II) is :-	ite has the formula $F_{0.93}O_{1.}$	$_{ m 00}$. The mole fraction o	f total iron present in the form of
	(A) 0.82	(B) 0.85	(C) 0.15	(D) 0.37
5.	HNO_3 oxidises NH_4^+ id of $(NH_4)_2SO_4$ is :-	ons to nitrogen and itself ge	ts reduced to NO_2 . The	moles of $\ensuremath{HNO_3}$ required by 1 mol
	(A) 4	(B) 5	(C) 6	(D) 2
6.	acidified KMnO ₄ soluti Z correctly :-	on. Which of the following	is most likely to represe	cts exactly with 25 ml of 0.04 mL ent the change in oxidation state of
	$(A) Z^{+} \rightarrow Z^{2+}$	(B) $Z^{2+} \rightarrow Z^{3+}$	(C) $Z^{3+} \rightarrow Z^{4+}$	$(D) Z^{2+} \rightarrow Z^{4+}$
7.	How many litres of C	$ m l_{_{2}}$ at S.T.P. will be liberated	by oxidation of NaCl w	vith 10 g KMnO ₄ :-
	(A) 3.54 litres	(B) 7.08 litres	(C) 1.77 litres	(D) none of these
8.	During the disproporti in alkaline medium is	:-	and iodate ions, the rati	io of iodate and iodide ions formed
	(A) 1 : 5	(B) 5 : 1	(C) 3 : 1	(D) 1 : 3
9.	$28 \text{ NO}_3^- + 3\text{As}_2\text{S}_3^- +$	$4H_2O \rightarrow 6AsO_4^{3-} + 28 NO_4^{3-}$	$O + 9SO_4^{2-} + H^+$	
	What will be the equi	valent mass of As_2S_3 in abo	ove reaction	
	(A) $\frac{M.wt.}{2}$	(B) $\frac{\text{M.wt.}}{4}$	(C) $\frac{\text{M.wt.}}{24}$	(D) $\frac{\text{M.wt.}}{28}$
1 0	L	4	24	20
10.		in the oxidation numbers		sulphuric acid and nitrogen dioxide.
	(A) $+2$, $+4$, -1	(B) $+2$, $+6$, -2		(D) 0, +8, -1
11.		e is boiled with NaOH, so		
11.	_			
	$x As_2S_3 + y NaOH -$	\rightarrow Na ₃ AsO ₃ + x Na ₃ AsS ₃ +	$\frac{y}{2}$ H ₂ O. What are the	values of x and y?
	(A) 1, 6	(B) 2, 8	(C) 2, 6	(D) 1, 4
12.		different sulphates in which	n its weight % is 28 and	1 37. What is the ratio of oxidation
	(A) 1 : 2	(B) 1 : 3	(C) 2 : 1	(D) 3 : 2
13.	CN⁻ is oxidised by NO	D_3^- in presence of acid :		
	a CN^- + b NO_3^- +	$c H^+ \longrightarrow (a + b) NO + a$	$CO_2 + \frac{c}{2} H_2O$	
	What are the values o	f a, b, c in that order :		
	(A) 3,7,7	(B) 3,10,7	(C) 3,10,10	(D) 3,7,10
14.	Which of the following	g solutions will exactly oxidi	ze 25 mL of an acid so	olution of 0.1 M Fe (II) oxalate :-
	(A) 25 mL of 0.1 M	KMnO ₄	(B) 25 mL of 0.2 I	M KMnO ₄
	(C) 25 mL of 0.6 M	KMnO ₄	(D) 15 mL of 0.1 l	M KMnO ₄

15.	$4.9~gm$ of $K_2Cr_2O_7$ is taken to prepare $0.1~L$ of the solution. $10~mL$ of this solution is further taken to oxidise Sn^{2^+} ion into Sn^{4^+} ion Sn^{4^+} so produced is used in 2^{nd} reaction to prepare Fe^{3^+} ion then the millimoles of Fe^{3^+} ion formed will be (assume all other components are in sufficient amount) [Molar mass of							
	$K_2 Cr_2 O_7 = 294 g$].							
	(A) 5	(B) 20	(C) 10	(D) none of these				
16.		ations are balanced atomwis						
		$+ 3H_2O_2 \longrightarrow 2Cr^{3+} + 7H_2O_3$						
	- ·	$+ 5H_2O_2 \longrightarrow 2Cr^{3+} + 9H_2O_3$	_					
	(iii) $Cr_2O_7^{2-} + 8H^+$	$+ 7H_2O_2 \longrightarrow 2Cr^{3+} + 11H$	$_{2}O + 5O_{2}$					
	The precise equation	on/equations representing th	ne oxidation of H_2O_2 is /	are:				
	(A) (i) only	(B) (ii) only	(C) (iii) only	(D) all the three				
17.			$600 \text{ mL of O}_2 \text{ at } 27 \text{ C and}$	d 1 atm pressure. Volume strength				
	of H ₂ O ₂ sample will							
	(A) 10 volume	(B) 13 volumes	(C) 11 volume	(D) 12 volume				
18.				ted against 0.05 M HCl, x mL of				
				HCl is used when methyl orange is				
		separate titrations. Hence ((D) mana of those				
1.0	(A) 40 mL	(B) 80 mL	(C) 120 mL	(D) none of these				
19.				solved in dilute sulphuric acid and 0.04 M KI solution where copper				
				plution is taken for analysis, filtered				
				nate solution. Liberated iodine re-				
		.5 mM sodium thiosulphate						
		percentage of ${ m CuCO}_3$ in the		•				
	(A) 7.41	(B) 74.1	(C) 61.75	(D) none of these				
20.	medium. 15 mL of	$0.4~\mathrm{M}$ hypo was consumed ired $10~\mathrm{mL}$ of $0.3~\mathrm{M}$ $\mathrm{H_2SC}$	l. II part was added with	eacts with hypo solution in acidic 100 mL of 0.3 M NaOH solution. neutralization. What was the initial				
	(A) 0.08 M	(B) 0.1 M	(C) 0.2 M	(D) none of these				
21.	• •			weighing 3.185 g was dissolved in				
	water and the solu	ution made up to 1 litre, 1	0 mL of this solution re	quired 3 mL of 0.1 N NaOH for solution in hot condition required				
	4 mL of 0.02M KM	MnO ₄ solution for complete	reaction. The wt. % of H	₂ SO ₄ in the mixture was :-				
	(A) 40	(B) 50	(C) 60	(D) 80				
22.	0.80 g of sample of	of impure potassium dichrom	ate was dissolved in water	r and made upto 500 mL solution.				
	sodium thiosulphate	e solution. 30 mL of this so	dium thiosulphate solution	${ m I_2}$ liberated required 24 mL of a required 15 mL of N/20 solution				
	ot pure potassium	dichromate. What was the p	percentage of $K_2Cr_2O_7$ in	given sample?				
	(A) 73.5 %	(B) 75.3 %	(C) 36.75 %	(D) none of these				

BRAIN	BRAIN TEASERS ANSWER KEY											E	EXERCIS	SE -2	
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	В	В	С	В	С	D	Α	Α	D	D	Α	D	D	D	С
Que.	16	17	18	19	20	21	22								
Ans.	Α	В	В	В	В	Α	Α								

TRUE / FALSE

- 1. In a compound, all the atoms of a particular element have the same oxidation number.
- 2. In H_2O_2 , both oxygen atoms have same oxidation number but in $Na_2S_2O_3$, the two S-atoms do not have same oxidation number.
- **3.** In the reaction :
 - 3 Cl_2 + 6 NaOH \longrightarrow 5 NaCl + NaClO $_3$ + 3H $_2$ O, Cl_2 acts purely as an oxidizing agent.
- **4.** In a redox reaction, the oxidation number of an element can either increase or decrease but both cannot happen simultaneously.
- 5. In CaOCl₂ both the chlorine atom are in same oxidation state.

FILL IN THE BLANKS

- 2. Reducing agent (or reductant) is a substance which electrons.

- 6. In HCN oxidation number of carbon is
- 7. The reaction $NH_4NO_2 \rightarrow N_2 + 2H_2O$ disproportionation reaction.

MATCH THE COLUMN

1.		Column-I		Column-II
	(A)	When $\mathrm{Bi}_2\mathrm{S}_3$ converted into Bi^{5^+} and S	(p)	18
	(B)	(B) When $Al_2(Cr_2O_7)_3$ reduced into Cr^{3+}		11
		in acidic medium		
	(C)	When FeS_2 converted into $\operatorname{Fe_2O_3}$ and	(r)	2
		SO ₂		
	(D)	When $\mathrm{Mn}(\mathrm{NO_3})_2$ converted into $\mathrm{MnO_4^{2-}}$	(s)	10
		and NO		

2.		Column-I	Column-II				
	(A)	Eq. wt. = $\frac{\text{Molecular weight}}{33}$	(p)	When CrI_3 oxidises into $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ and IO_4^{-}			
	(B)	Eq. wt. = $\frac{\text{Molecular weight}}{27}$	(q)	When $Fe(SCN)_2$ oxidises into Fe^{3+} , SO_4^{2-} , CO_3^{2-} and NO_3^-			
	(C)	Eq. wt. = $\frac{\text{Molecular weight}}{28}$	(r)	When NH_4SCN oxidizes into SO_4^{2-} , CO_3^{2-} and NO_3^{-}			
	(D)	Eq. wt. = $\frac{\text{Molecular weight}}{24}$	(s)	When As_2S_3 oxidises into AsO_3^- and SO_4^{2-}			

3.		Column-I		Column-II
	(A)	$\underbrace{P_2H_4 \longrightarrow PH_3 + P_4H_2}$	(p)	$E = \frac{3M}{4}$
	(B)	$\frac{I_2}{\longrightarrow} I^- + IO_3^-$	(q)	$E = \frac{3M}{5}$
	(C)	$MnO_4^- + Mn^{2+} + H_2O \longrightarrow Mn_3O_4^- + H^+$	(r)	$E = \frac{15M}{26}$
	(D)	$\frac{\text{H}_3\text{PO}_2}{\longrightarrow} \text{PH}_3 + \text{H}_3\text{PO}_3$	(s)	$E = \frac{5M}{6}$

ASSERTION & REASON

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I
- (C) Statement-I is true, Statement-II is false
- (D) Statement-I is false, Statement-II is true
- 1. Statement-I: Oxidation involves loss of electrons and reduction involves gain of electrons.

Because

Statement-II: The overall reaction in which oxidation and reduction occur simultaneously is called redox reaction

2. Statement-I: H₂SO₄ cannot act as reducing agent.

Because

Statement-II: Sulphur cannot increase its oxidation number beyond +6.

3. Statement-I: The oxidation state of superoxide ion in KO_2 , CsO_2 and RbO_2 is -1/2.

Because

Statement-II: Since the oxidation state of an alkali metal in any compound is always +1, the oxidation state of oxygen is -1/2 in the O_2^- ion.

4. Statement-I: In the redox reaction

8 H⁺ (aq) + 4 NO₃⁻ + 6 Cl⁻ + Sn (s)
$$\rightarrow$$
 SnCl₆²⁻ + 4 NO₂ + 4 H₂O

the reducing agent is Sn (s),

Because

Statement-II: In balancing half reaction, $S_2O_3^{2-} \to S(s)$, the number of electrons added on the left is 4.

Statement-I: Among Br $^-$, $O_2^{^{2-}}$, H^- and $NO_3^{^-}$, the ions that could not act as oxidising agents are Br $^-$ and H^- .

Because

Statement-II: Br^{Θ} and H^{-} could not be reduced.

COMPREHENSION BASED QUESTIONS

Comprehension # 1

Oleum is considered as a solution of SO_3 in H_2SO_4 , which is obtained by passing SO_3 in solution of H_2SO_4 . When 100 g sample of oleum is diluted with desired weight of H_2O then the total mass of H_2SO_4 obtained after dilution is known as % labelling in oleum.

For example, a oleum bottle labelled as '109% H_2SO_4 ' means the 109 g total mass of pure H_2SO_4 will be formed when 100 g of oleum is diluted by 9 g of H_2O which combines with all the free SO_3 present in oleum to form H_2SO_4 as $SO_3 + H_2O \longrightarrow H_2SO_4$

1.	What is the $\%$ of free SO_3 in an oleum that is labelled as '104.5 $\%$ H_2SO_4 '?								
	(A) 10	(B) 20	(C) 40	(D) none of these					
2.	9.0 g water is added into in the solution is :	o oleum sample labelled as	$^{\prime}112\%$ $\mathrm{H_{2}SO_{4}^{\prime}}$ then the an	mount of free SO_3 remaining					
	(A) 14.93 L at STP	(B) 7.46 L at STP	(C) 3.73 L at STP	(D) 11.2 L at STP					
3.				s reacted with 5.3 g $\mathrm{Na_2CO_3}$, erature after the completion					
	(A) 2.46 L	(B) 24.6 L	(C) 1.23 L	(D) 12.3 L					
4.		diluted with water. The set SO_3 in the sample		f 0.4 N NaOH for complete					
	(A) 74	(B) 26	(C) 20	(D) none of these					
Compre	hension # 2								
	etc. The strength of "10 STP or 1 litre of $\rm H_2O_2$	V" means 1 volume of H gives 10 litre of O_2 at S^2	${\rm I_2O_2}$ on decomposition given	$^{\prime}$, % (w/V), volume strength, we set 10 volumes of oxygen at f $\mathrm{H_2O_2}$ is shown as under :					
	H_2O_2 (aq) $\longrightarrow H_2O$	$(\ell) + \frac{1}{2} O_2 $ (g)							
	as reducing agent $\mathrm{H_2O_2}$	ng as well as reducing ag converted into O_2 , both olution = 2 Molarity of	cases it's n-factor is 2.	$_2\mathrm{O}_2$ converted into $\mathrm{H_2O}$ and					
1.	What is the molarity of		2 2						
	(A) 1 M	(B) 2 M	(C) 5.6 M	(D) 11.2 M					
2.	What is the percentage	strength (% w/V) of "11	.2 V" H ₂ O ₂ ?						
	(A) 1.7	(B) 3.4	(C) 34	(D) none of these					
3.	20 mL of $\rm H_2O_2$ solution volume strength of $\rm H_2O$		of $0.05~\mathrm{M}~\mathrm{KMnO_4}$ in acid	ic medium then what is the					
	(A) 2.8	(B) 5.6	(C) 11.2	(D) none of these					
4.		. = 375) sample containing H_2O_2 . Wha		acidic medium is completely y of the sample ?					
	(A) 28.12 %	(B) 70.31 %	(C) 85 %	(D) none of these					
Compre	hension # 3								
	Equivalent weight = $\frac{\text{Mol}}{}$	ecular weight / Atomic weig n — factor	<u>ght</u>						
		actant species taking part		lp of n-factor we can predicts ocal of n-factor's ratio of the					
	_	ncid/base is number of m no. of moles of electron		ned per mole of acid/base. e of reactant.					

Example 1:

 Example 2 : $FeC_2O_4 \longrightarrow Fe^{3+} + 2CO_2$

Total no. of moles of e^- lost by 1 mole of $FeC_2O_4 = 1 + 1 - 2 \Rightarrow 3$

 \therefore n-factor of FeC₂O₄ = 3

1. n-factor of $Ba(MnO_4)_2$ in acidic medium is :

(A) 2

(B) 6

(C) 10

(D) none of these

2. For the reaction,

 $H_3PO_2 + NaOH \longrightarrow NaH_2PO_2 + H_2O$

What is the equivalent weight of H_3PO_2 ? (mol. wt. is M)

(A) M

- (B) M/2
- (C) M/3
- (D) none of these
- 3. For the reaction, $Fe_{0.95}O$ (molar mass : M) \longrightarrow Fe_2O_3 . What is the eq. wt. of $Fe_{0.95}O$?
 - (A) $\frac{M}{0.85}$
- (B) $\frac{M}{0.95}$
- (C) $\frac{M}{0.8075}$
- (D) none of these
- 4. In the reaction, xVO + yFe₂O₃ \longrightarrow FeO + V₂O₅. What is the value of x and y respectively ?
 - (A) 1, 1
- (B) 2, 3
- (C) 3, 2
- (D) none of these

MISCELLANEOUS TYPE QUESTION

ANSWER KEY

EXERCISE -3

- <u>True / False</u>
 - **1**. F
- **2**. T
- **3**. F
- **4.** F
- **5**. F

- Fill in the Blanks
 - 1. decrease
- 2. loses
- 3. oxidized as well as reduced
- **4.** oxygen has been oxidised $(O^{2-} \longrightarrow O_2)$; chlorine has been reduced $(Cl^{+5} \longrightarrow Cl^{-1})$
- **5.** x = +7/3
- **6.** +2

7. is not

- Match the Column
 - 1. (A) \rightarrow s ; (B) \rightarrow p ; (C) \rightarrow q ; (D) \rightarrow r
 - **2.** (A) \rightarrow q; (B) \rightarrow p; (C) \rightarrow s; (D) \rightarrow r
 - 3. (A) \rightarrow s ; (B) \rightarrow q ; (C) \rightarrow r ; (D) \rightarrow p
- <u>Assertion Reason Questions</u>
 - **1**. B
- **2**. A
- **3**. A
- **4**. B
- **5**. A

- Comprehension Based Questions
 - Comprehension #1: 1. (B)
- **2**. (C)
- **3**. (C)
- **4**. (B)

- Comprehension #2 : 1. (A)
- **2**. (B)
- **3**. (B)
- **4**. (B)

- Comprehension #3 : 1. (C)
- **2**. (A)
- **3**. (C)
- **4**. (B)

- 1. Calculate the oxidation number of underlined elements in the following compounds:
 - (a) $K[\underline{Co}(C_2O_4)_2.(NH_3)_2]$
- (b) $K_4 \underline{P}_2 O_7$

(c) <u>Cr</u> O₂Cl₂

(d) $Na_{2}[\underline{Fe}(CN)_{5}NO^{+}]$

(e) \underline{Mn}_3O_4

(f) $Ca(\underline{C}lO_2)_2$

- (g) $[\underline{Fe} (NO)(H_2O)_5]SO_4$
- (h) $Z_{n}O_{n}^{2}$

- (c) <u>Fe</u>_{0.93}O
- 2. Write balanced net ionic equation for the following reactions in acidic solution.
 - (a) $S_4O_6^{2-}$ (aq) +Al (s) \longrightarrow H_2S (aq) + Al³⁺ (aq)
 - (b) $S_2O_3^{2-}$ (aq) + $Cr_2O_7^{2-}$ (aq) $\longrightarrow S_4O_6^{2-}$ (aq) + Cr^{3+} (aq)
 - (c) ClO_3^- (aq) + As_2S_3 (s) \longrightarrow Cl^- (aq) + $H_2AsO_4^-$ (aq) + HSO_4^- (aq)
 - (d) IO_3^- (aq) + Re (s) \longrightarrow ReO₄ (aq) + I⁻ (aq)
 - (e) HSO_4^- (aq) + As_4^- (s) + $Pb_3O_4^-$ (s) $\longrightarrow PbSO_4^-$ (s) + $H_2AsO_4^-$ (aq)
 - (f) HNO_{2} (aq) $\longrightarrow NO_{3}^{-} + NO$ (g)
- **3.** Write balanced net ionic equations for the following reactions in basic solution :
 - (a) $C_4H_4O_6^{2-}(aq) + ClO_3^{-}(aq) \longrightarrow CO_3^{2-}(aq) + Cl^{-}(aq)$
 - (b) Al (s) + BiONO₃ (s) \longrightarrow Bi (s) + NH₃ (aq) + Al (OH)₄ (aq)
 - (c) H_2O_2 (aq) + Cl_2O_7 (aq) \longrightarrow ClO_2^- (aq) + O_2 (g)
 - (d) Tl_2O_3 (s) + NH_2OH (aq) \longrightarrow TIOH (s) + N_2 (g)
 - (e) $Cu(NH_3)_4^{2+}$ (aq) + $S_2O_4^{2-}$ (aq) $\longrightarrow SO_3^{2-}$ (aq) + Cu (s) + NH_3 (aq)
 - (f) $Mn(OH)_2$ (s) + MnO_4 (aq) $\longrightarrow MnO_2$ (s)
- 4. KMnO₄ oxidizes X^{n^+} ion to XO_3^- , itself changing to Mn^{2^+} in acid medium. 2.68 10^{-3} mole of X^{n^+} requires $1.61 \quad 10^{-3}$ mole of MnO_4^- . What is the value of n? Also calculate the atomic mass of X, if the weight of 1g equivalent of XO_3^- is 56.
- 5. In a quantitative determination of iron in an ore, an analyst converted 0.40 g, of the ore into its ferrous. This required 40.00 mL of 0.1 N solution of $KMnO_4$ for titration.
 - (i) How many milliequivalents of $KMnO_4$ does 40.00 mL of 0.1 N solution represent?
 - (ii) How many equivalents of iron were present in the sample of the ore taken for analysis?
 - (iii) How many grams of iron were present in the sample?
 - (iv) What is the percentage of iron in the ore?
 - (v) What is the molarity of KMnO₄ solution used?
 - (vi) How many moles of $KMnO_4$ were used for titration ? (Fe = 56)
- 6. The mixture of CuS (molar weight = M_1) and Cu_2S (molecular weight = M_2) oxidised by $KMnO_4$ (molecular weight = M_3) in acidic medium, the product obtained are Cu^{2+} , SO_2 . Find the equivalent weight of CuS, Cu_2S and $KMnO_4$ respectively.
- 7. Consider the reaction $H^+ + IO_4^- + I^- \rightarrow I_2^- + H_2O$. Find the ratio of coefficients of IO_4^- , I^- and I_2 .
- 8. A dilute solution of H_2SO_4 is made by adding 5 mL of 3N H_2SO_4 to 245 mL of water. Find the normality and molarity of the solution.
- 9. What volume at NTP of gaseous ammonia will be required to be passed into 30 cc of N H_2SO_4 solution to bring down the acid strength of the latter to 0.2 N.

- 10. A solution containing 4.2 g of KOH and $Ca(OH_2)$ is neutralized by an acid. It consums 0.1 equivalent of acid, calculate the percentage composition of the sample.
- 11. How many mL of 0.1 N HCl are required to react completely with 1 g mixture of Na₂CO₃ and NaHCO₃ containing equimolar amounts of two?
- 12. 0.5 g of fuming H_2SO_4 (oleum) is diluted with water. The solution requires 26.7 mL of 0.4N NaOH for complete neutralization. Find the % of free SO_3 in the sample of oleum.
- 13. 10 g CaCO₃ were dissolved in 250 mL of M HCl and the solution was boiled. What volume of 2 M KOH would be required to equivalence point after boiling? Assume no change in volume during boiling.
- 14. H_3PO_4 is a tri basic acid and one of its salt is NaH_2PO_4 . What volume of 1 M NaOH solution should be added to 12 g of NaH_2PO_4 to convert it into Na_3PO_4 ?
- 15. 1.64~g of mixture of $CaCO_3$ and $MgCO_3$ was dissolved in 50 mL of 0.8 M HCl. The excess of acid required 16 mL of 0.25 M NaOH for neutralization. Calculate the percentage of $CaCO_3$ and $MgCO_3$ in the sample.
- 16. 1.5 g of chalk were treated with 10 mL of 4N HCl. The chalk was dissolved and the solution made to 100 mL, 25 mL of this solution required 18.75 mL of 0.2 N NaOH solution for complete neutralisation. Calculate the percentage of pure $CaCO_3$ in the sample of chalk?
- A solution contains Na_2CO_3 and $NaHCO_3$. 20 mL of this solution required 4 mL of 1N HCl for titration with Ph indicator. The titration was repeated with the same volume of the solution but with MeOH. 10.5 mL of 1 N HCl was required this time. Calculate the amount of Na_2CO_3 & $NaHCO_3$.
- 18. A solution contains a mix of Na_2CO_3 and NaOH. Using Ph as indicator 25 mL of mixture required 19.5 mL of 0.995 N HCl for the end point. With MeOH, 25 mL of the solution required 25 mL of the same HCl for the end point. Calculate g/L of each substance in the mixture.
- 19. 200 mL of a solution of mixture of NaOH and Na_2CO_3 was first titrated with Ph and $\frac{N}{10}$ HCl. 17.5 mL of HCl was required for end point. After this MeOH was added and 2.5 mL of same HCl was again required for next end point. Find out amounts of NaOH and Na_2CO_3 in the mix.
- 20. A solution contains Na_2CO_3 and $NaHCO_3$. 10 mL of this requires 2 mL of 0.1 M H_2SO_4 for neutralisation using Ph indicator. MeOH is then added when a further 2.5 mL of 0.2 M H_2SO_4 was needed. Calculate strength of Na_2CO_3 and $NaHCO_3$.
- 21. A sample containing Na_2CO_3 & NaOH is dissolved in 100 mL solution. 10 mL of this solution requires 25 mL of 0.1 N HCl when Ph is used as indicator. If MeOH is used as indicator 10 mL of same solution requires 30 mL of same HCl. Calculate % of Na_2CO_3 and NaOH in the sample.
- 22. It required 40.05 mL of 1 M Ce^{4+} to titrate 20 mL of 1 M Sn^{2+} to Sn^{4+} . What is the oxidation state of the cerium in the product.
- 23. A volume of 12.53 mL of 0.05093 M SeO_2 reacted with exactly 25.52 mL of 0.1 M $CrSO_4$. In the reaction, Cr^{2^+} was oxidized to Cr^{3^+} . To what oxidation state was selenium converted by the reaction.
- **24.** Pottasium acid oxalate $K_2C_2O_4.3H_2C_2O_4.4H_2O$ can be oxidized by MnO_4 in acid medium. Calculate the volume of 0.1 M KMnO₄ reacting in acid solution with one gram of the acid oxalate.
- **25.** A 1.0 g sample of H_2O_2 solution containing x% H_2O_2 by mass requires x cm³ of a KMnO₄ solution for complete oxidation under acidic conditions. Calculate the normality of KMnO₄ solution.

- 26. Metallic tin in the presence of HCl is oxidized by $K_2Cr_2O_7$ to stannic chloride, $SnCl_4$. What volume of deci-normal dichromate solution would be reduce by 1 g of tin.
- 27. 5 g sample of brass was dissolved in one litre dil. H_2SO_4 . 20 mL of this solution were mixed with KI, liberating I_2 and Cu^+ and the I_2 required 20 mL of 0.0327 N hypo solution for complete titration. Calculate the percentage of Cu in the alloy.
- 0.84 g iron ore containing x percent of iron was taken in a solution containing all the iron in ferrous condition. The solution required x mL of a dichromatic solution for oxidizing the iron content to ferric state. Calculate the strength of dichromatic solution.
- 29. The neutralization of a solution of 1.2 g of a substance containing a mixture of $H_2C_2O_4.2H_2O$, $KHC_2O_4.H_2O$ and different impurities of a neutral salt consumed 18.9 mL of 0.5 N NaOH solution. On titration with $KMnO_4$ solution, 0.4 g, of the same substance needed 21.55 mL of 0.25 N $KMnO_4$. Calculate the % composition of the substance.
- 30. 50 g of a sample of $Ca(OH)_2$ is dissolved in 50 mL of 0.5 N HCl solution. The excess of HCl was titrated with 0.3 N NaOH. The volume of NaOH used was 20cc. Calculate % purity of $Ca(OH)_2$.
- 31. One g of impure sodium carbonate is dissolved in water and the solution is made up to 250 mL. To 50 mL of this made up solution, 50 mL of 0.1 N HCl is added and the mix after shaking well required 10 mL of 0.16 N NaOH solution for complete titration. Calculate the % purity of the sample.
- 32. What amount of substance containing 60% NaCl, 37% KCl should be weighed out for analysis so that after the action of 25 mL of 0.1 N AgNO $_3$ solution, excess of Ag $^+$ is back titrates with 5 mL of NH $_4$ SCN solution. Given that 1 mL of NH $_4$ SCN = 1.1. mL of AgNO $_3$.
- 33. A bottle labelled with "12 V H_2O_2 " contain 700 mL solution. If a student mix 300 mL water in it what is the g/litre strength & normality and volume strength of final solution.
- 34. 50 mL of an aqueous solution of H_2O_2 were treated with an excess of KI solution and dilute H_2SO_4 , the liberated iodine required 20 mL of 0.1 N $Na_2S_2O_3$ solution for complete interaction. Calculate the concentration of H_2O_2 in g/ℓ .
- 35. 100 kg hard water contains 5 g MgSO₄. Find hardness.
- 36. One litre hard water contains 1 mg CaCl₂ and 1 mg MgSO₄. Find hardness.
- 37. Calculate the hardness of water sample which contains 0.001 mol MgSO_4 per litre of water.
- 38. A solution of a 0.4 g sample of H_2O_2 reacted with 0.632 g of $KMnO_4$ in the presence of sulphuric acid. Calculate the percentage purity of the sample of H_2O_2 .
- 39. 5 litre of a solution of H_2O_2 with x N strength is diluted to 5.5 litre. This 5.5 litre H_2O_2 solution gives 28 litre O_2 at NTP. Find the value of x.
- 40. Calculate the amount of lime Ca(OH)₂ required to remove the hardness in 60 litre of pond water containing 1.62 mg of calcium bicarbonate per 100 mL of water.
- 41. 10 g sample of bleaching powder was dissolved into water to make the solution one litre. To this solution 35 mL of 1.0 M Mohr salt solution was added containing enough $\rm H_2SO_4$. After the reaction was complete, the excess Mohr salt required 30 mL of 0.1 M KMnO₄ for oxidation. Find out the % of available $\rm Cl_2$ approximately is (mol wt. 71).

- Calculate the amount (in milligrams) of SeO_3^{-2} in solution on the basis of following data 20 mL of M/60 solution of KBrO₃ was added to a definite volume of SeO_3^{-2} solution. The bromine evolved was removed by boiling and excess of KBrO₃ was back titrated with 5 mL of M/25 solution of NaAsO₂. The reactions are given below. (Atomic mass of K = 39, Br = 80, As = 75, Na = 23, O = 16, Se = 79)
 - (a) $SeO_3^{-2} + BrO_3^{-} + H^+ \longrightarrow SeO_4^{-2} + Br_2 + H_2O$
 - (b) $BrO_3^- + AsO_2^- + H_2O \longrightarrow Br^- + AsO_4^{-3} + H^+$
- 43. A 1.0 g sample of Fe_2O_3 solid of 55.2% purity is dissolved in acid and reduced by heating the solution with zinc dust. The resultant solution is cooled and made upto 100.0 mL. An aliquot of 25.0 mL of this solution requires 17.0 mL of 0.0167 M solution of an oxidant for titration. Calculate the number of moles of electrons taken up by the oxidant in the reaction of the above titration.

CONCEPTUAL SUBJECTIVE EXERCISE ANSWER KEY EXERCISE-4(A) **(a)** +3 (b) +5(c) +6(d) +2 (e) 8/3 or (2 and 3) **(f)** +3 (g) +2(h) +2(i) 200/93 = 2.15(a) $S_4O_6^{2-}(aq) + 6Al (s) + 20 H^+ \longrightarrow 4 H_2S (aq) + 6Al^{3+} (aq) + 6H_2O$ **(b)** $6S_2O_2^{2-}(aq) + Cr_2O_7^{2-}(aq) + 14 H^+ \longrightarrow 3 S_4O_4^{2-}(aq) + 2 Cr^{3+}(aq) + 7H_2O_4^{2-}(aq)$ (c) $14\text{ClO}_3^-(\text{aq}) + 3\text{As}_2\text{S}_3$ (s) + $18\text{ H}_2\text{O} \longrightarrow 14\text{ Cl}^-$ (aq) + $6\text{H}_2\text{AsO}_4^-$ (aq) + 9HSO_4^- (aq) + 15H^+ (d) $7IO_3^-(aq) + 6Re(s) + 3H_2O \longrightarrow 6 ReO_4^-(aq) + 7I^-(aq) + 6H_2^+$ (e) $30HSO_4^-(aq) + As_4^-(s) + 10 Pb_3O_4(s) + 26H^+ \longrightarrow 30 PbSO_4^-(s) + 4H_2AsO_4^-(aq) + 24H_2O_4^-(s)$ (f) $3HNO_{2}$ (aq) $\longrightarrow HNO_{3} + 2NO$ (g) $+ H_{2}O$ (a) $3C_4H_4O_6^{2-}(aq) + 5ClO_3^{-}(aq) + 18OH^{-} \longrightarrow 12CO_3^{2-}(aq) + 5Cl^{-}(aq) + 15H_2O$ **(b)** 11Al (s) + 3BiONO₃ (s) + 21H₂O + 11OH⁻ \longrightarrow 3Bi (s) + 3NH₃ (aq) + 11Al (OH)₄ (aq) (c) $4H_2O_2$ (aq) + Cl_2O_7 (aq) + $2OH^- \longrightarrow 2ClO_2^-$ (aq) + $4O_2$ (g) + $5H_2O$ (d) Tl_2O_3 (s) + $4NH_2OH$ (aq) \longrightarrow 2TlOH (s) + $2N_2$ (g) + $5H_2O$ (e) $Cu(NH_3)_4^{2+}$ (aq) + $S_2O_4^{2-}$ (aq) + $4OH^- \longrightarrow 2SO_3^{2-}$ (aq) + Cu (s) + $4NH_3$ (aq) + $2H_2O$ (f) $3Mn(OH)_2$ (s) $+ 2MnO_4^-$ (aq) $\longrightarrow 5MnO_2$ (s) $+ 2H_2O + 2OH^-$ **4.** 2, 41 **[5.** (i) 4.0, (ii) 0.0040, (iii) 0.224, (iv) 56.00%, (v) 0.02M, (vi) 0.0008 mol **7.** 1:7:4 8. 0.06 N and 0.03 M 9. 537.6 mL **10.** KOH = 35%, $Ca(OH)_2 = 65\%$ **11.** V = 157.89 mL**12.** 20.72 % 13. V = 25 mL**14.** 200 mL **15.** $MgCO_3 = 51.22\%$, $CaCO_3 = 48.78 \%$ **16.** 83.33 **17.** 0.424 g ; 0.21g **18.** 23.2 g, 22.28 g **19.** 0.06 g; 0.0265 g **20.** 4.24 g/L ; 5.04 g/L **21.** 39.85%; 60.15% **22**. +3 **23**. zero **24.** V = 31.68 mL**25.** 0.588 N 26. 337 mL **27**. 41.53 % **28.** 0.15 N **29.** $H_2C_2O_4.2H_2O = 14.36\%$, $KH_2O_4.H_2O=81.71\%$ **30.** 1.406 % **31**. 90.1% **32.** 0.1281 g **33.** 25.5 g/L, 1.5 N, 8.4 V **34.** 0.68 g/L 35. 41.66 ppm **36.** 1.734 ppm **39.** x = 1**37**. 100 ppm **38.** 85% **40**. 0.444 g **41.** 7.1% **42**. 84mg **43**. 6

- 1. 1.2475 g of crystalline copper sulphate was dissolved in water and excess of KI was added. The liberated iodine consumed 50 mL $N/10~Na_2S_2O_3$ solution to reach the end point of the titration. Calculate the number of water molecules of hydration in crystalline copper sulphate salt.
- A 1g sample of $K_2Cr_2O_7$ containing some inert material was entirely reduced with conc. HCl. The chlorine liberated was passed through hot solution of NaOH at $80^{\circ}C$, and it completely diproportionates to form ClO_3^- and Cl^- . This NaClO $_3$ was isolated and its reduction with KI (aq) liberated iodine, giving Cl^- . The iodine thus liberated required 100 mL of decinormal hypo solution for complete titration. What is the percentage purity of the dichromate sample?
- 3. 2.5g of mixture of crystalline oxalic acid ($H_2C_2O_4$. $2H_2O$) and sodium oxalate ($Na_2C_2O_4$) was dissolved in 100 mL of water. 50 mL of this solution was titrated against N/10 NaOH solution when 119.05 mL of the base was found necessary to reach the end point with phenolphthalein as the indicator. 1g of the mixture was dissolved in water and the solution titrated against N/10 KMnO₄ in the presence of dil. H_2SO_4 . What is the volume of KMnO₄ needed for getting the end point with 0.5g of the mixture?
- 4. 25 mL of a solution containing HCl was treated with excess of $M/5~KIO_3$ and KI solution of unknown concentration where I_2 liberated is titrated against a standard solution of $0.021~M~Na_2S_2O_3$ solution whose 24 mL were used up. Find the strength of HCl and volume of KIO_3 solution consumed:
- 5. 0.6213 g of sample contains an unknown amount of As_2O_3 . The sample was treated with HCl resulting information of $AsCl_3$ (g) which was distilled into a beaker of water. The hydrolysis reaction is as follows: $AsCl_3 + 2H_2O \rightarrow HAsO_2 + 3H^+ + 3Cl^-$

The amount of $HAsO_2$ was determined by titration with 0.04134 M I_2 , requiring 23.04 mL to reach the equivalence point. The redox products in the titration were H_3AsO_4 and I^- . Find the amount of $KMnO_4$ needed to oxidize As in As_2O_3 to its maximum possible oxidation state in acidic medium.

- A sample of steel weighing 0.6 g and containing S as an impurity was burnt in a stream of O_2 , when S was converted to its oxide $SO_2.SO_2$ was then oxidized to SO_4^{-} by using H_2O_2 solution containing 30 mL of 0.04 M NaOH. 22.48 mL of 0.024 M HCl was required to neutralize the base remaining after oxidation. Calculate the % of S in the sample :
- 7. In the presence of fluoride ion, Mn^{2^+} can be titrated with MnO_4^- , both reactants being converted to a complex of Mn(III). A 0.545 g sample containing Mn_3O_4 was dissolved and all manganese was converted to Mn^{2^+} . Titration in the presence of fluoride ion consumed 31.1 mL of $KMnO_4$ that was 0.177 N against oxalate.
 - (a) write a balanced chemical equation for the reaction, assuming that the complex is MnF_4^- .
 - (b) what was the % of Mn_3O_4 in the sample?
- 8. A mixture of two gases, H_2S and SO_2 is passed through three beakers successively. The first beaker contains Pb^{2^+} ions, which absorbs S^{2^-} forming PbS. The second beaker contains 25 mL of 0.0396 N I_2 to oxidize SO_2 to $SO_4^{2^-}$. The third contains 10 mL of 0.0345 N thiosulphate solution to retain any I_2 carried over from the second absorber. A 25 L gas sample was passed through the apparatus followed by an additional amount of N_2 to sweep last traces of SO_2 from first and second absorber. The solution from the first absorber was made acidic and treated with 20 mL of 0.0066 M $K_2Cr_2O_7$ which converted S^{2^-} to SO_2 . The excess dichromate was reacted with solid KI and the liberated iodine required 7.45 mL of 0.0345 N $Na_2S_2O_3$ solution. The solutions in the second and third absorbers were combined and the resultant iodine was titrated with 2.44 mL of the same thiosulphate solution. Calculate the concentrations of SO_2 and SO_2 and SO_2 in SO_2 of the sample :

9. 1 g of a moist sample of a mixture of $KClO_3$ and KCl was dissolved in water and made upto 250 mL. 25 mL of this solution was treated with SO_2 to reduced chlorate into chloride and the excess SO_2 was boiled off. When the total chloride was precipitated, 0.1435 g of AgCl was obtained. In another experiment 25 mL of the original solution was treated with 30 mL of 0.2 N solution of $FeSO_4$ and unreacted $FeSO_4$ required 37.5 mL of 0.08 N solution of an oxidizing agent for complete oxidation. Calculate the molar ratio of chlorate and chloride in the given mixture. Fe^{2+} reacts with ClO_3^- according to equation : $ClO_3^- + 6Fe^{2+} + 6H^+ \rightarrow Cl^- + 6Fe^{3+} + 3H_2O$

Also calculate the mass percent of moisture present in the moist sample.

- A steel sample is to be analysed for Cr and Mn simultaneously. By suitable treatment the Cr is oxidized to $\text{Cr}_2\text{O}_7^{2^-}$ and the Mn to MnO_4^- . A 10.00 g sample of steel is used to produce 250.0 mL of a solution containing $\text{Cr}_2\text{O}_7^{2^-}$ and MnO_4^- . A 10.00 mL portion of this solution is added to a BaCl_2 solution and by proper adjustment of the acidity, the chromium is completely precipitated as BaCrO_4 ; 0.0549 g is obtained. A second 10.00 mL portion of this solution requires exactly 15.95 mL of 0.0750 M standard Fe^{2^+} solution for its titration (in acid solution). Calculate the % of Mn and % of Cr in the steel sample.
- 11. 1.16 g CH₃(CH₂)_nCOOH was burnt in excess air and the resultant gases (CO₂ and H₂O) were passed through excess NaOH solution. The resulting solution was divided in two equal parts. One part required 50 mL of 1 N HCl for neutralization using phenolphthalein as indicator. Another part required 80 mL of 1 N HCl for neutralization using methyl orange as indicator. Find the value of n and the amount of excess NaOH solution taken initially.
- A 1.5 g sample containing oxalic acid and some inert impurity was dissolved in enough water and volume made up to 250 mL. A 20 mL portion of this solution was then mixed with 30 mL of an alkali solution. The resulting solution was then treated with stoichiometric amount of $CaCl_2$ just needed for precipitation of oxalate as CaC_2O_4 . Solution was filtered off and filtrate was finally titrated against 0.1 M HCl solution. 8.0 mL of acid was required to reach the equivalence point. At last, the above neutral solution was treated with excess of $AgNO_3$ solution and AgCl obtained was washed, dried and weighed to be 0.4305 g. Determine mass percentage of oxalic acid in the original sample :
- A 1 g sample containing NaOH as the only basic substance and some inert impurity was left exposed to atmosphere for a very long time so that part of NaOH got converted into Na₂CO₃ by absorbing CO₂ from atmosphere. The resulting sample was dissolved in water and volume made upto 100 mL. A 20 mL portion of this solution required 16 mL 0.25 M HCl solution to reach the equivalence point when methyl orange was used as indicator. In a separate analysis, 20 mL portion of the same solution was taken along with phenolphthalein indicator and mixed with 50 mL of 0.1 M HCl solution. An additional 9.00 mL 0.1 M Ba(OH)₂ solution was required to just restore the pink colour of solution. Determine mass percentage of NaOH in the original sample and mass percentage of Na₂CO₃ in the sample after exposure to atmosphere.

BF	RAIN STORMING SUBJECTIVE EXERCISE	ANSWE	R KEY		EXERCISE-4(B)
1.	5	2.	58.8%	3 . 77.4	5 mL
4.	$V_{\text{KIO}_3} = 0.42\text{mL}$, [HCl] = 0.0168 N	5.	0.06 g	6. 1.76	%
7.	40.77%	8.	$0.12 \text{ mg H}_2\text{S/L}, 0.718$	${\rm mg~SO_2/L}$	
9.	$ClO_3^-/Cl^- = 1$, 1.5% moisture by mass	10.	Cr = 2.821% , $Mn = 1$.498%	
11.	n = 4, NaOH = 6.4 g	12.	82.5	13 . 80, 3	36.05 %

1. MnO_4^- is good oxidising agent in different medium changing to -

[AIEEE-02]

 $MnO_4^- \longrightarrow Mn^{2+}$

____ MnO₄²⁻

 \longrightarrow MnO $_2$ → Mn₂O₃

Changes in oxidation number respectively are -

- (1) 1, 3, 4, 5
- (2) 5, 4, 3, 2
- (3) 5, 1, 3, 4
- (4) 2, 6, 4, 3
- 2. Oxidation number of Cl in CaOCl₂ (bleaching powder is)

[AIEEE-02]

- (1) Zero, since it contains Cl₂
- (2) -1, since it contains Cl⁻
- (3) +1, since it contains ClO-
- (4) +1 and -1 since it contains ClO- and Cl-
- 3. Which of the following is a redox

[AIEEE-02]

- (3) $N_2O_5 + H_2O \longrightarrow 2HNO_3$

- (4) $AgNO_3 + KI \longrightarrow AgI + KNO_3$
- 4. In the coordination compound, $K_4[Ni\ (CN)_6]$, the oxidation state of nickel is
- [AIEEE-03]

(1) +1

(2) +2

(3) -1

(4) 0

5. The oxidation state of Cr in $[Cr(NH_3)_4Cl_2]^+$ is - [AIEEE-05]

(1) +2

(2) +3

(3) 0

- (4) +1
- 6. The oxidation state of chromium in the final product formed by the reaction between Kl and acidified potassium dichromate solution is -[AIEEE-05]
 - (1) +6

(2) +4

(3) +3

- (4) +2
- 7. Which of the following chemical reaction depicts the oxidizing behaviour of H₂SO₄? [AIEEE-06]
 - $(1) Ca(OH)_2 + H_2SO_4 \rightarrow CaSO_4 + 2H_2O$
 - (2) NaCl + $H_2SO_4 \rightarrow NaHSO_4 + HCl$
 - (3) $2PCl_5 + H_2SO_4 \rightarrow 2POCl_3 + 2HCl + SO_2Cl_9$
 - (4) $2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$

Que.	1	2	3	4	5	6	7
Ans	3	4	1	2	2	3	4

1.	The oxidation number of phosphorus in $Ba(H_2PO_2)_2$ is :										
	(A) $+3$	(B) +2	(C) +1	(D) -1							
2.	The number of electron $NO_3^- + 4H^+ + e^- \rightarrow$	ns to balance the following	g equation :-		[JEE	1991]					
	(A) 5	(B) 4	(C) 3	(D) 2							
3.			(C) 3	(D) Z	[JEE	1991]					
J.	What is the volume str	(B) 8.4	(C) 3.0	(D) 8.0	locc	1991]					
4.	(A) 4.8	, ,	• •		of Ro	O with					
4.		the most electronegative	element in the products of	i lile reaction	JEE						
	dilute H_2SO_4 .	(B) -1 and -2	(C) -2 and 0	(D) 2 and		1991]					
5.	(A) 0 and -1	(b) -1 and -2	(C) -2 and 0	(D) -2 and	[JEE	10021					
5.	For the redox reaction, $M_{2}O^{-} + C_{1}O^{2} + C_{2}$	$H^+ \rightarrow Mn^{2+} + CO_2 + H_2C$	1		lace	1992]					
		of the reactants for the b $C_2O_4^{2-}$	H ⁺								
	MnO_4^-	5									
	(A) 2		16								
	(B) 16	5	2								
	(C) 5	16	2								
_	(D) 2	16	5	1 (1 , .	. 1.					
6.		KMnO ₄ that will need to r	react completely with one n	nole Terrous C							
	solution is:	(D) 2 /F	(0) 4 /5	(D) 1	[JEE	1997]					
7	(A) 2/5	(B) 3/5	(C) 4/5	(D) 1	. 1.	1					
7.		$KMnO_4$ that will be needed	to react with one mole of	sulphite ion ir							
	is :	(D) 0 (F	(O) 4 (F	(D) 1	[JEE	1997]					
0	(A) 2/5	(B) 3/5	(C) 4/5	(D) 1		10001					
8.			lar mass when it is conver	rted to :	[JEE	1998]					
_	(A) Mn_2O_3	(B) MnO ₂	(C) MnO_4	(D) MnO_4^{2-}		4000					
9.		of sulphur in S_8 , S_2F_2 and			[JEE	1999]					
	(A) 0, +1 and -2		(B) $+2$, $+1$ and -2								
4.0	(C) 0, +1 and +2		(D) -2 , $+1$ and -2			4000					
10.		I phosphorus acid (H ₃ PO ₃		(T) 0 6	[JEE	1999]					
	(A) 0.1	(B) 0.9	(C) 0.3	(D) 0.6							
11.			state of the element is +6		[JEE	2000]					
	(A) MnO_4^-	(B) $Cr(CN)_6^{3-}$	(C) NiF_6^{2-}	(D) CrO ₂ Cl	-						
12.		on in Na_2 [Fe(CN) ₅ NO^{\oplus}] in			[JEE	2001]					
	(A) +2	(B) +3	(C) +8/3	(D) none of							
13.			ate is made upto 250 mL.	The volume of							
		neutralise 10 mL of this s			[JEE	2001]					
	(A) 40 mL	(B) 20 mL	(C) 10 mL	(D) 4 mL							
14.		ectron weigh one kilogran			[JEE	2002]					
	(A) 6.023 10 ²³	(B) $\frac{1}{9.108} \times 10^{31}$	(C) $\frac{6.023}{9.108} \times 10^{54}$	(D) $\frac{1}{9.108}$	6.023	$\times 10^8$					
15.	Which has maximum n	umber of atoms :			[JEE	2003]					
	(A) 24 g of C (12)	(B) 56 g of Fe (56)	(C) 27 g of Al (27)	(D) 108 g c	f Ag (1	08)					
16.	In basic medium I^- oxidises by MnO_4^- . In this process I^- replaces by :										
	(A) IO_3^-	(B) I ₂	(C) IO_4^-	(D) IO ⁻							

- 17. Amongst the following, the pair having both the metals in their highest oxidation state is :[JEE 2004]
 - (A) $[Fe(CN)_6]^{3-}$ and $[Co(CN)_6]^{3-}$

(B) $[CrO_2Cl_2]$ and $[MnO_4^-]$

(C) TiO_2 and MnO_2

(D) $[MnCl_4]^{2-}$ and $[NiF_6]^{-2}$

18. O_3 does not oxidise:

[JEE 2005]

(A) KI

- (B) FeSO₄
- (C) KMnO₄
- (D) K_2MnO_4
- 19. A 5.0 cm 3 solution of H_2O_2 liberates 0.508 g of iodine from an acidified KI solution. Calculate the strength of H_2O_2 solution in terms of volume strength at STP. [JEE' 1995]
- A 3.00 g sample containing Fe_3O_4 , Fe_2O_3 and an inert impure substance, is treated with excess of KI solution in presence of dilute H_2SO_4 . The entire iron is converted into Fe^{2^+} along with the liberation of iodine. The resulting solution is diluted to 100 mL. A 20 mL of the diluted solution require 11 mL of 0.5 M $Na_2S_2O_3$ solution to reduce the iodine present. A 50 mL of diluted solution after complete extraction of the iodine requires 12.80 mL of 0.25 KMnO₄ solution in dilute H_2SO_4 medium for the oxidation of Fe^{2^+} . Calculate the percentages of Fe_2O_3 and Fe_3O_4 in the original sample. [JEE 2000]
- One litre of a mixture of O_2 and O_3 at NTP was allowed to react with an excess of acidified solution of KI. The Iodine liberated required 40 mL of M/10 sodium thiosulphate solution for titration. What is the percent of ozone in the mixture? Ultraviolet radiation of wavelength 300 nm can decompose ozone. Assuming that one photon can decompose one ozone molecule, how many photons would have been required for the complete decomposition of ozone in the original mixture? [JEE 97,5]
- A sample of hard water contains 96 ppm of SO₄²⁻ and 183 ppm of HCO₃⁻, with Ca²⁺ as the only cation. How many moles of CaO will be required to remove HCO₃⁻ from 1000 kg of this water? If 1000 kg of this water is treated with the amount of CaO calculate above, what will be the concentration (in ppm) of residual Ca²⁺ ions (Assume CaCO₃ to be completely insoluble in water)? If the Ca²⁺ ions in one litre of the treated water are completely exchanged with hydrogen ions, what will be its pH (one ppm means one part of the substance in one million part of water, weight / weights)?

 [JEE' 1997]
- 23. An aqueous solution containing $0.10~{\rm g~KIO_3}$ (formula wt. 214.0) was treated with an excess of KI solution. The solution was acidified with HCl. The liberated ${\rm I_2}$ consumed 45.0 mL of thiosulphate solution to decolourise the blue starch iodine complex. Calculate the molarity of the sodium thiosulphate solution.[JEE 1998]
- 24. How many millilitre of $0.5 \text{ M H}_2\text{SO}_4$ are needed to dissolve 0.5 g of copper II carbonate ?[JEE 1999]
- 25. Hydrogen peroxide solution (20 mL) reacts quantitatively with a solution of $KMnO_4$ (20 mL) acidified with dilute H_2SO_4 . The same volume of $KMnO_4$ solution is just decolorized by 10 mL of $MnSO_4$ in neutral medium simultaneously forming a dark brown precipitate of hydrated MnO_2 . The brown precipitate is dissolved in 10 mL of 0.2 M sodium oxalate under boiling condition in the presence of dilute H_2SO_4 . Write the balanced equations involved in the reactions and calculate the molarity of H_2O_2 . [JEE 2001]

PREVIOUS YEARS QUESTIONS					A)	ANSWER KEY			EXERCISE -5[B]						
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	С	С	В	В	Α	В	Α	В	Α	D	D	Α	Α	D	Α
Que.	16	17	18												
Ans.	Α	В	С												

19. 4.48

- **20.** Fe₂O₃ = 49.33 %, Fe₃O₄ = 34.8%
- **21.** 6.57% O_3 (by weight), 1.2 10^{21} photons
- **22.** 1.5, 40 ppm, pH = 2.6989

23. 0.0623 M

24. 8.097 mL

25. 0.1 M