SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

1.	The most abundant el	The most abundant element found in the earth's crust is:-							
	(A) Tin	(B) Hydrogen	(C) Silicon	(D) Oxygen					
2.	Which of the following	g element is found in its na	ative state:-						
	(A) Sodium	(B) Gold	(C) Silver	(D) Both (B) and (C)					
3.	Which of the following	g contain both calcium and	d magnesium:-						
	(A) Magnesite	(B) Calamine	(C) Carnalite	(D) Dolomite					
4.	Which of the following	is not an ore of Iron:-							
	(A) Haematite	(B) Limonite	(C) Cassiterite	(D) Magnetite					
5.	Litharge is a mineral	of:-							
	(A) Magnesium	(B) Lithium	(C) Lead	(D) Zinc					
6.	Which one is mineral	of manganese:-							
	(A) Magnesite	(B) Malachite	(C) Magnetite	(D) Pyrolusite					
7.	Calamine is:-								
	(A) BaCO ₃	(B) ZnCO ₃	(C) ZnS	(D) ZnO					
8.	Black Jack is:-								
	(A) Silicate ore	(B) Oxide ore	(C) Carbonate ore	(D) Sulphide ore					
9.	Pyrolusite is:-								
	(A) MnO	(B) Mn_3O_2	(C) SnO ₂	(D) MnO ₂					
10.	The impurities present	t in the ore is called:-							
	(A) Slag	(B) Flux	(C) Alloy	(D) Gangue					
11.	Leaching method is us	Leaching method is used to concentrate the ores of:-							
	(A) Gold	(B) Silver	(C) Aluminium	(D) All of these					
12.	Which of the following	Which of the following can be obtained by hydrometallurgy:-							
	(A) Copper	(B) Gold	(C) Silver	(D) All of these					
13.	Which is wrongly mached:-								
	(A) Gun metal- Cu+Z	n+Sn	(B) Duralumin - Cu+A	l+Mn					
	(C) German silver Cu	+Zn+Ni	(D) Electron Pb+Sn						
14.	The process of conve	rting hydrated Alumina int	o anhydrous Alumina is call	ed:-					
	(A) Roasting	(B) Calcination	(C) Smelting	(D) Dressing					
15 .	The metallurgical prod	ess in which a metal is ob	otained in a fused state is ca	ılled:-					
	(A) Smelting	(B) Roasting	(C) Calcination	(D) Froth floatation					
16.	Blister copper is:-								
	(A) Pure copper		(B) Ore of copper						
17	(C) Alloy of copper	. (.1 * 1.1	(D) Copper having 2%						
17.		_	oair both are reduced by carl	oon :- (D) CaO, Cr ₂ O ₃					
	(A) SnO_2 , MnO_2	(B) Fe ₂ O ₃ , PbO	(C) ZnO, K ₂ O	(D) CaO, Ci_2O_3					

18.	Calomel is the name of	of :-							
	(A) HgCl ₂	(B) Hg ₂ Cl ₂	(C) HgCl ₂ + Hg	(D) $Hg_2Cl_2 + Hg$					
19.	"Hydro metallurgy" me	ethod is used for the extrac	tion of the following meta	als :-					
	(A) Zn & Ag	(B) Ag & Cu	(C) Zn & Hg	(D) Hg & Cu					
20.	Heating of pyrites to	remove sulphur is called as	:-						
	(A) Roasting	(B) Calcination	(C) Smelting	(D) Froth-floatation					
21.	In which of the follow	ing reaction "Philosopher's	wool" is formed:-						
	$(A) Zn + S \xrightarrow{\Delta} Z$	ZnS	(B) $Zn + Cl_2 \xrightarrow{\Delta}$	$ZnCl_2$					
	(C) FeS + O ₂ $\xrightarrow{\Delta}$	FeO + SO ₂	(D) Zn + H ₂ O (steam)	$\xrightarrow{\Delta}$ ZnO + H ₂					
22 .	Which one of the follo	owing metals can not be ext	tracted by using Al as a re	educing agent :-					
	(A) Na from Na ₂ O	(B) Cr from Cr_2O_3	(C) Mn from MnO_2	(D) Fe from Fe_2O_3					
23.	The correct set of carl	oonate ores is : -							
	(a) Magnesite	(b) Siderite	(c) Zincite	(d) Argentite					
	(A) a, b	(B) a, d	(C) c, d	(D) b, c					
24.	Calcination is the process of heating the ore :-								
	(A) in inert gas		(B) in the presence	of air					
	(C) in the absence ai	r	(D) in the presence	of CaO and MgO					
25.	Matte :-								
	(A) Cu ₂ S + FeS	(B) Cu ₂ O + FeS	(C) $Cu_2O + Cu_2S$	(D) FeS + SiO_2					
26.	Which of the following statement is correct for roasting :-								
	(A) Convert sulphide	to oxide	(B) Convert sulphide	to sulphate					
	(C) Remove arsenic a	and sulphur impurities	(D) All						
27.	Among the following	statements, the incorrect	one is						
	(A) Cassiterite ore of tin contains the impurities of Wolframite which are separated by electromagnetic separator.								
	(B) Tin metal is obtain	ned by the carbon reductio	n of black tin.						
		(C) In the extraction of lead from galena, the roasting and self-reduction are carried out in the same furnance at different temperature.							
	(D) None of these								
28.	Fe can displace which	of the following ions from	their aqueous solutions ?						
	(a) Na ⁺	(b) Zn^{2+}	(c) Cu ²⁺	(d) Ag^+					
	(A) a & b	(B) b & c	(C) c & d	(D) b, c, d					
29.	There are following ex	straction process of silver b	ut not :						
	(A) as a side product	in electrolytic refining of co	pper						
	(B) Parke's process in	which Zn is used to extrac	t silver by solvent extraction	on from molten lead					
		er sulphide with KCN and t	hen reaction of soluble co	mplex with Zn					
	(D) by heating Na[Ag(CN ₂)]							
30.	Which of the following	is not an ore :							
	(A) malacite	(B) calamine	(C) stellite	(D) cerussite					

	(D) $MgCO_3 \longrightarrow MgC$	$O + CO_2$						
34.	Identify the process to wi	nich the following reaction	belongs :					
	$\mathrm{Al_2O_3.2H_2O} + \mathrm{Na_2CO_3} \longrightarrow \mathrm{2NaAlO_2} + \mathrm{2H_2O} + \mathrm{CO_2}$							
	2NaAlO ₂ + 2H ₂ O + CC	$O_2 \xrightarrow{50-60^{\circ}C} Al_2O_3.2H$	O ₃ .2H ₂ O + Na ₂ CO ₃					
	(A) Hall's process		(B) Baeyer's process					
	(C) Serpeck's process		(D) None of these					
35.	(Ag + Pb) alloyMelt and ac	$\frac{1d zinc}{}$ (Ag + Pb + Zn) me	$\text{lt} \xrightarrow{\text{Cool}} \overline{\frac{\text{LayerX}}{\text{LayerY}}}$					
	Select correct statement based on above scheme :							
	(A) Layer X contains zinc and silver							
	(B) Layer Y contains lead and silver but amount of silver in this layer is smaller than in the layer X							
	(C) X and Y are immiscible layers							
	(D) All are correct statements							
36.	Formation of metallic copinvolves which one of the	= =	e in the normal thermo-me	etallurgical process e				
	(A) CuS + $\frac{3}{2}$ O ₂ \longrightarrow C	uO + SO ₂ ;	$CuO + C \longrightarrow Cu + CO$)				
	(B) CuS + $\frac{3}{2}$ O ₂ \longrightarrow C	uO + SO ₂ ;	$2CuO + CuS \longrightarrow 3Cu + SO_2$					
	(C) CuS + $2O_2 \longrightarrow Cu$	SO ₄ ;	$CuSO_4 + CuS \longrightarrow 2Cu + 2SO_2$					
	(D) CuS + $\frac{3}{2}$ O ₂ \longrightarrow C	tuP + SO ₂ ;	$CuO + CO \longrightarrow Cu + CO$	002				
37.	Bessemerisation is carried	d out for						
	(i) Fe	(ii) Cu	(iii) Al	(iv) silver				
	(A) i, ii	(B) ii, iii	(C) iii, iv	(D) i, iii				

(B) reducing calcined dolomite with ferrosilicon at high temperature under pressure

(C) copper pyrites

(D) bronze

essentially

(B) horn silver

Which one of the following reactions is an example for calcination process :-

31.

32.

33.

In the Pidgeon process, Mg is produced by :

(A) $2Ag + 2HCl + (O) \longrightarrow 2AgCl + H_2O$

(C) 2ZnS + $3O_2 \longrightarrow 2ZnO + 2SO_2$

(A) electrolysis of fused ${\rm MgCl}_2$

(B) 2 Zn + O₂ \longrightarrow 2ZnO₂

(C) both are correct(D) none is correct

"Fool's gold" is (A) iron pyrites

- **38.** Consider the following statement :
 - Roasting is carried out to:
 - (i) convert sulphide to oxide and sulphate
 - (ii) remove water of hydration
 - (iii) melt the ore
 - (iv) remove arsenic and sulphur impurities
 - Of these statements:
 - (A) (i), (ii) and (iii) are correct
 - (B) (i) and (iv) are correct
 - (C) (i), (ii) and (iv) are correct
 - (D) (ii), (iii) and (iv) are correct
- 39. For extraction of sodium from NaCl, the electrolytic mixture NaCl + Na_3AlF_6 + $CaCl_2$ is used. During extraction process, only sodium is deposited on cathode but K and Ca do not because
 - (A) Na is more reactive than K and Ca
 - (B) Na is less reactive than K and Ca
 - (C) NaCl is less stable than Na_3AlF_6 and $CaCl_2$
 - (D) the discharge potential of Na^+ is less than that of K^+ and Ca^{2+} ions.
- 40. Among the following statements, the incorrect one is :
 - (A) Calamine and siderite are carbonates
 - (B) Argentite and cuprite are oxides
 - (C) Zinc blende and pyrites are sulphides
 - (D) Malachite and azurite are ores of copper
- 41. Pb and Sn are extracted from their chief ore by :
 - (A) Carbon reduction and self reduction respectively.
 - (B) Self reduction and carbon reduction respectively.
 - (C) Electrolysis and self reduction respectively.
 - (D) Self reduction and electrolysis respectively.

CHE	CK YO	UR GI	RASP			ΑN	ISWE	RKE	ΞY				EXER	CISE-1	
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	D	D	D	С	С	D	В	D	D	D	D	D	D	В	Α
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	D	В	В	В	Α	D	Α	Α	С	Α	D	D	С	D	С
Que.	31	32	33	34	35	36	37	38	39	40	41				
Ans.	В	Α	D	Α	D	В	Α	С	D	В	В				

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THEN ONE CORRECT ANSWERS)

1.	During the extraction of Ag and Au using a KCN solution, cyanide ions react with metal ions as						
	(A) a reducing agent	(B) a complexing agent	(C) an oxidizing agent	(D) a lewis base			
2.	Which of the following is	dolomite:-					
	(A) $CaCO_3$. $MgCO_3$	(B) Cu ₂ S Fe ₂ S ₃	(C) CdS	(D) ZnS			
3.	Which of the following or	es is a double salt composi	tion :-				
	(A) Carnallite	(B) Alum	(C) Dolomite	(D) Cerrusite			
4.	The following metal- ore	combination is correct :-					
	(A) Pb-Galena	(B) Fe-siderite	(C) Al-Bauxite	(D) Mn-Magnesite			
5.	NaCN used in the froth	floatation method for the pu	urification of ore is:-				
	(A) ZnS which contain Pb (C) PbS which contain Zr		(B) Cu ₂ S which contain (D) PbS which contain S				
6.	Which of the following m	netal can not be extracted b	y smelting process:-				
	(A) Lead	(B) Zinc	(C) Iron	(D) Aluminium			
7.	The reduction of $\operatorname{Cr_2O_3}$,	by heating it with aluminium	m is known as:-				
	(A) Smelting	(B) Roasting	(C) Calcination (D)	Aluminothermic process			
8.	Which metal is leached fr	om its ore by the use of K	CN :-				
	(A) Copper	(B) Zinc	(C) Gold	(D) Iron			
9.	Name the flux to remove	the impurity of SiO_2 :-					
	(A) P ₄ O ₁₀	(B) CaO	(C) N ₂ O ₅	(D) Al_2O_3			
10.	Mercury containers are r	made of:-					
	(A) Fe	(B) Pb	(C) Sn	(D) Zn			
11.	Autoreduction process is	used in the extraction of:-					
	(A) Cu & Pb	(B) Zn & Hg	(C) Cu & Al	(D) Fe & Pb			
12.	When Alumina is electrol	ysed in presence of cryolite	e, the gas liberated at gra	phite anode is:-			
	(A) F ₂	(B) O ₂	(C) CF ₄	(D) Cl ₂			
13.		per, metal is formed in the		o reaction:-			
	(A) $Cu_2S + 2Cu_2O \rightarrow 6$	6Cu + SO ₂	(B) $Cu_2S \rightarrow 2Cu + S$				
	(C) Fe + $Cu_2O \rightarrow 2Cu$	+ FeO	(D) $2Cu_2O \rightarrow 4Cu + C$	O_2			
14.		ng processes are respectively	y:-				
	(i) $P_2O_5 + \dots \times X \longrightarrow$	$Ca_3(PO_4)_2$					
	(ii) $2Cu_2O + Cu_2S \rightarrow$	y + SO ₂ ↑					
	(iii) $Fe_2O_3 + 3CO \rightarrow$	z + 3CO ₂ ↑					
15.	(A) 3Ca, CuSO ₄ , Fe Which of the following p	(B) 3Ca(OH) ₂ , 6Cu, FeO rocess involves smelting	(C) 3CaO, 6Cu, 2Fe	(D) $3CaO_2$, CuS, FeO			
	(A) 2 PbS + $3O_2 \rightarrow 2P$	² bO + 2SO ₂ ↑	(B) Al_2O_3 . $2H_2O \rightarrow Al_2O$	$_{2}O_{3} + 2H_{2}O$			

(D) $Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr + Heat$

(C) $Fe_2O_3 + CO \rightarrow 2Fe + 2CO_2$

16.	Out of the following, w	hich ores are calcinated du	ring extraction :-					
	(a) Copper pyrites	(b) Malachite	(c) Bauxite					
	Correct answer is :-							
	(A) a, b, c	(B) b, c	(C) Only a	(D) All				
17 .	Which of the following	match are incorrect :-						
	(A) Goldschmidt alumin	othermite process - Cr ₂ O ₃	(B) Mac Arther cyanide	process - Fe				
	(C) Mond process - Ni		(D) Van Arkel process –	Au				
18.	Malachite on calcination	gives \rightarrow 'A' + CO ₂ + H ₂ O.	Compound 'A' on reduction v	with carbon gives \rightarrow CO + 'B'				
	Here 'A' and 'B' are :-							
	(A) Fe ₂ O ₃ , Fe	(B) CuO, Cu	(C) CuCO ₃ , CuO	(D) MgO, Mg				
19.	Which of the following	ores are calcinated during	extraction :-					
	(A) Argentite	(B) Calamine	(C) Azurite	(D) Copper pyrites				
20 .	Which method of purif	cation is represented by the	e following equations					
	$Ti + 2I_2 \xrightarrow{523K} TiI_4 \xrightarrow{1700 K} Ti + 2I_2$							
	(A) Cupellation	(B) Poling	(C) Van Arkel	(D) Zone refining				
21.	Which are correctly is	matched :-						
	(A) Poling – refining of	copper	(B) Cupellation – refining	g of silver				
	(C) Smelting – An oxid	ation process	(D) Roasting – An oxida	tion process				
22 .	Which of the following	reaction is a part of Serpec	ck's process :-					
	(A) $Al_2O_3 + 2NaOH -$	(A) $Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$						
	(B) $Fe_2O_3 + 2Al \rightarrow 2Fe + Al_2O_3$							
	(C) AlN + $3H_2O \rightarrow Al(OH)_3 + NH_3$							
	(D) Al_2O_3 . $2H_2O + 2N_3$	$a_2CO_3 \rightarrow 2NaAlO_2+CO_2 +$	2H ₂ O					
23.			purification of nickel by :-					
	Ni + 4CO $\xrightarrow{320\text{K}}$	$Ni(CO)_4 \xrightarrow{420K} Ni$	+ 4CO					
	impure		pure	_				
0.4	(A) Cupellation	(B) Mond's process	(C) Van Arkel method	(D) Zone refining				
24.		ed as basic refractory mat		(D) Fo O				
25.	(A) Al ₂ O ₃	(B) SiO ₂	(C) CaO	(D) Fe ₂ O ₃				
20.	Carbon cannot be used in the reduction of Al_2O_3 because :- (A) it is an expensive							
		rmation of ${\rm CO_2}$ is more th	nan that of Al ₂ O ₃					
	(C) pure carbon is not		2 0					
	(D) the enthalpy of for	rmation of Al_2O_3 is too hi	igh					
26.	Which of the following	reaction is not involved i	n themite process :-					
	(A) 3Mn ₃ O ₄ + 8Al -	\longrightarrow 9Mn + 4Al ₂ O ₃	(B) Cr ₂ O ₃ + 2AI ——	\rightarrow Al ₂ O ₃ + 2Cr				
	(C) 2Fe + Al ₂ O ₃ —	→ 2Al + Fe ₂ O ₃	(D) B ₂ O ₃ + 2Al ——	\rightarrow 2B + Al ₂ O ₃				
27.		reduction processes are	= -					
	(A) Fe ₂ O ₃ + C Red	^{uction} → Fe	(B) ZnO + C Reduction	on Zn				
	(C) SnO ₂ + C Reduce	stion → Sn	(D) PbO + C Reduction	on → Pb				
	<u>-</u>							

28.	Consider the following								
	$Cu_2S \xrightarrow{\text{roast in air}} A$								
	Which is not the correc	ct statement :							
	(A) it is self-reduction								
	(B) A is only Cu ₂ O & B is a mixture of Cu & SO ₃								
	(C) A is a mixture of $\mathrm{Cu_2O}$ and $\mathrm{Cu_2S}$ and B is a mixture of $\mathrm{Cu}\ \&\ \mathrm{SO}_2$								
	(D) all are incorrect sta	tements							
29.	Main source of lead is	PbS. It is converted to Pb	b by :-						
	(i) PbS $\xrightarrow{\text{air}}$ PbO $\xrightarrow{\Delta}$	$+ SO_2 \xrightarrow{C} Pb + CO_2$	2						
	(ii) PbS $\xrightarrow{\text{air}}$ PbO	+ PbS $\xrightarrow{\Delta}$ Pb + SO ₂							
	Self reduction process i	S :							
	(A) i	(B) ii	(C) Both	(D) None					
30.	$Ag_2S + NaCN \longrightarrow$	A							
	$A + Zn \longrightarrow B$								
	B is a metal. Hence A and B :-								
	(A) $Na_2 [Zn(CN)_4]$, Zn	(B) Na[Ag(CN) ₂], Ag	(C) $Na[Ag(CN)_4]$, Ag	(D) $Na_3[Ag(CN)_4]$, Ag					
31.	$Ca_3(PO_4)_2$ is :-								
	(A) Thomas slag		(B) Used in cement ma	nufacturing					
	(C) Used in manufacturing of phosphorus fertilizer (D) Used as a refactory material								
32.	Bauxite is purified by :	-							
	(A) Hall's process	(B) Baeyer's process	(C) Serpeck's process	(D) L.D. process					
33.	The processes which do	o use catalysts are :-							
	(A) Contact process	(B) Thermite process	(C) Ostwald's process	(D) Haber's process					
34.	Metallurgy involves step	os :-							
	(A) concentration of ore	e (B) Oxidation of ore	(C) purification	(D) Reduction of ore					
35.	Which of the following	metals are extracted by e	electrolytic reduction ?						
	(A) Cu	(B) Al	(C) Mg	(D) Ag					
36.	Which of the following	ores is/are oxide ore(s) ?							
	(A) Cassiterite	(B) Bauxite	(C) Cryolite	(D) Haematite					
37.	Which of the following	are correctly matched ?							
	(A) Schweitzer's reagent	\longrightarrow An ammoniacal sol	ution of cupric sulphate						
	(B) Bordeaus mixture —	\longrightarrow CuSO $_4$ and Ca(OH) $_2$							
	(C) Semiconductor \longrightarrow	Ge							
	(D) Horn silver \longrightarrow Ag	$_3$ NO $_3$							
38.	In which of the following	ng pair(s), the minerals are	e converted in to metals b	by self-reduction process?					
	(A) Cu ₂ S, PbS	(B) PbS, HgS	(C) PbS, ZnS	(D) Ag ₂ S, Cu ₂ S					
39.	Cassiterite ore (SnO ₂) i	s purified by :-							
	(A) Magnetic separator	(B) Roasting	(C) Leaching	(D) Calcination					

- **40.** The reaction(s) which does (do) not occur in the reduction zone in the extraction of iron from haematite ore is (are) :-
 - (A) $Fe_2O_3 + CO \rightarrow 2FeO + CO_2$
 - (B) FeO + CO \rightarrow Fe + CO₂
 - (C) $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$
 - (D) CaO + $SiO_2 \rightarrow CaSiO_3$
- **41.** Which of the following statement(s) is (are) true?
 - (A) In process of the precipitation of silver sodium dicyano argentate (I), the zinc acts as reducing agent as well as complexing agent.
 - (B) In process of the roasting, the copper pyrites is converted into a mixture of Cu_2S & FeS which, in turn, are partially oxidised
 - (C) Limonite, haematite and magnesite are ores of iron.
 - (D) Tin and lead both are extracted from their ores by self-reduction.
- 42. The role of fluorspar (CaF_2) which is added in the electrolytic reduction of alumina dissolved in fused cryolite is (are):-
 - (A) to acts as a catalyst
 - (B) to make the fused mixture very conducting
 - (C) to lower the temperature of the melt
 - (D) to decrease the rate of oxidation of carbon at the anode
- 43. Which of the followgin are correctly mathched?
 - (A) Turquoise \longrightarrow (CuAl₆PO₄)₄ (OH)₈ . $4H_2$ O
 - (B) Peacock ore \longrightarrow Cu₄FeS₂
 - (C) Malachite \longrightarrow CuCO $_3$. Cu(OH) $_2$
 - (D) Chalcopyrites \longrightarrow CuFeS₂
- 44. Which of the following statements are correct in connection with the extraction of silver?
 - (A) Silver is obtained as a by-product in the extraction of copper, lead and zinc.
 - (B) Silver is obtained from the anode slime formed in the electrolytic refining of copper and zinc
 - (C) Zinc is used to extract silver by solvent extraction from molten lead in Parke's process.
 - (D) Pttinsons process is used for desilverization of lead
- **45.** Which of the following does not disproportionate?
 - (A) Cu⁺
- (B) Au^{3+}
- (C) Cu²⁺
- (D) Au+

BF	RAIN T	EASE	RS			A۱	ISW E	R KE	EΥ			1	EXER	CISE-2	
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	B,D	Α	A,B,C	A,B,C	С	D	D	С	В	Α	Α	В	Α	С	С
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	В	B,D	В	В,С	С	A,B,D	С	В	С	D	С	A,B,C,D	В	В	В
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	A,B,C	A,B,C	A,C,D	A,C,D	В,С	A,B,D	A,B,C	A,B	Α	C,D	A,B	В,С	A,C,D	A,B,C,D	B,C

TRUE / FALSE

- 1. Metals can be recovered from their ores by chemical methods.
- 2. Sulphide ore of copper can be concentrated by froth floatation process.
- **3.** Silver is purified by distillation process.
- 4. Highly pure metal can be obtained by zone refining.
- **5.** Zinc is precipitated from a solution of zinc sulphate by addition of iron.
- 6. The slag obtained during the extraction of copper pyrites is composed mainly of FeSiO₂.
- 7. In calcination, ore is heated strongly in the absence of air.

FILL IN THE BLANKS

- 1. The most abundant metal in the earth's crust is
- 2. Cassiterite is an ore of
- **3.** In the metallurgical process for the electro-refining of the metal, the anode is made of metal.
- 4. In a thermite process, is used as a reducing agent.
- 5. The mineral carnallite contains magnesium and metal.
- 6. The actual reducing agent of haematite in blast furnace is
- 8. The transition metal present in the alloy gun metal is
- 9. The slag formed during the metallurgy of copper pyrites is
- 10. Iron is copper in the electrochemical series and hence displaces from a solution of copper sulphate.

MATCH THE COLUMN

1.		Column-I (Ore)		Column-II (Created formula & properties)
	(A) (B) (C) (D)	Iron pyrites Fool's gold Galena Haematite	(p) (q) (r) (s)	FeS ₂ Sulphide ore Fe ₂ O ₃ Concentrated by froth

2.		Column-I (Metal)	Column-II			
	(A)	Magnesite	(p)	Ore of magnesium		
	(B)	Siderite	(q)	Ore of aluminium		
	(C)	Corundum	(r)	Oxide ore		
l	(D)	Bauxite	(s)	Carbonate ore		

3.		Column-I (Ore)	Column-II			
	(A)	Iron	(p)	Carbon reduction method		
	(B)	Lead	(q)	Self reduction		
	(C)	Copper	(r)	Thermite process		
	(D)	Chromium	(s)	Hydrometallurgical process		

ASSERTION & REASON QUESTIONS

These questions contains, Statement-I (assertion) and Statement-II (reason).

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False.
- (D) Statement-I is False, Statement-II is True.
- 1. Statement-I : All the ores are mineral

Statement-II: Most of the ores contains metals in combined state

2. Statement-I: In the extraction of Ag the complex Na[Ag(CN)2] is reacted with Zn

Statement-II: In is transition metal according to electronic theory

3. Statement-I: Thermite mixture Fe₂O₃+Al (powder) is used in the welding.

Statement-II : Al is a good reductant

4. Statement-I: CuFeS₂ is concentrated by froath floatation method

Statement-II: CuFeS, is main ore of copper

5. Statement-I: In the smelting of copper ore coke is added in the blast furnace.

Statement-II: Coke reduces, CuO into Cu.

6. Statement-I: Extraction of iron metal from iron oxide ore is carried out by heating with coke.

Statement-II: The reaction $Fe_2O_3(s) \xrightarrow{\Delta} Fe(s) + 3/2O_2(g)$ is a spontaneous process at standarde condition.

7. Statement-I: Wolframite impurities are separated from cassiterite by electromagnetic separation.

Statement-II: Cassiterite being magnetic is attached by the magnet and forms a separate heap.

8. Statement-I: Lead, tin and bismuth are purified by liquation method.

Statement-II : Lead, tin and bismuth have low m.p. as compared to impurities.

COMPREHENSION BASED QUESTIONS

Comprehension # 1

Dow's process of extraction of Mg involves extraction of Mg from sea water. Sea water is concentrated in sun light and is then treated with skaked lime. Magnesium hydroxide is heated in a stream of HCl to give $\mathrm{MgCl_2}$ which is electrolysed to dischatge Mg. The mixture is in the ratio 35% $\mathrm{MgCl_2}$ + 50% NaCl + 15% $\mathrm{CaCl_2}$. NaCl and $\mathrm{CaCl_2}$ are added to lower the fusion temperature and to increase the conductance.

$$Mg^{2+} + Ca(OH)_2 \longrightarrow Mg(OH)_2 + Ca^{2+}$$

$$Mg(OH)_2 + 2HCl \longrightarrow MgCl_2 + 2H_2O$$
 (liquid)

Electrolysis of fused $MgCl_2 \xrightarrow{Anode} 2Cl^- \longrightarrow Cl_2 + 2_{-1}e$

$$\xrightarrow{\text{Cathode}} Mg^{2+} + 2_{-1}e \longrightarrow Mg$$

Mg electrolysed is protected from atmospheric oxidation by a blanket of inert gases.

1. $Mg^{2+} + Ca(OH)_2 \longrightarrow Mg(OH)_2 \downarrow + Ca^{2+}$

This reaction indicates:

- (A) $Mg(OH)_2$ is weaker base than $Ca(OH)_2$
- (B) Soubility products of $Mg(OH)_2$ is less than that of $Ca(OH)_2$
- (C) Polarising power of Mg^{2+} is more than that of Ca^{2+} ion
- (D) Both (B) and (C).
- 2. In the hydrated chloride of Mg the value of x is
 - (A) 6

(B) 4

(C) 8

- (D) 10
- $\label{eq:model} \textbf{3.} \qquad \text{Molten mixture contains } Mg^{2+}, \ Na^+ \ \text{and} \ Ca^{2+} \ \text{but at cathode only Mg is discharged because} :$
 - (A) Standard reduction potential of Mg is least among the three
 - (B) Standard oxidation potential of Mg is least among the three
 - (C) Discharge potential of Mg is highest
 - (D) None of these
- 4. Molten mixture of NaCl of $CaCl_2$ is added to the heated $MgCl_2.xH_2O$ with dry HCl gas because :
 - (A) $MgCl_2.xH_2O$ + dry $HCl \xrightarrow{973-1023 \, K}$ Partially dehydrated $MgCl_2$ and molten (NaCl + CaCl₂) makes it fully dehydrated
 - (B) CaCl₂ is dehydrating agent
 - (C) ($CaCl_2$ + NaCl) lowers the m.pt. of $MgCl_2$
 - (D) None of the above

Comprehension # 2

Extraction of Aluminium can be understand by :

electrolytic reduction of Al₂O₃

Electrolyte : $(Al_2O_3 + Cryolite)$

Cathode : Graphite inside the Fe container

Anode : Graphite rods

- 1. The purpose of adding cryolite is :
 - (A) to increase the electrical conductivity of pure aluminium
 - (B) to lower the melting point of Al_2O_3
 - (C) to remove the impurities as slag
 - (D) to increase the Al% in the yield

2.	Coke powder is spreaded over the molten electrolyte due to :
	(A) prevent the heat radiation from the surface
	(B) prevent the corrosion of graphite anode
	(C) prevent oxidation of molten aluminium by air
	(D) both (A) & (B)
3.	The function of fluorspar (CaF_2) is :
	(A) to decrease the melting point of electrolyte
	(B) to increase electrolytic conductivity power
	(C) to remove the impurities as slag
	(D) all of the above
4.	The molten electrolytes contains $Na^+,\ Al^{3+},\ Ca^{2+}$ but only Al gets deposited at cathode because :
	(A) Standard reduction potential of Al is more than those of Na & Ca
	(B) Standard oxidation potential of Al is more than those of Na & Ca
	(C) Discharge potential of Al^{3+} is higher than $Na^+\ \&\ Ca^{2+}$
	(D) Graphite reacts only with Al^{3+} and not with Na^{+} & Ca^{2+}
5.	What is wrong if anode is made of nickel instead of graphite?
	(A) Ni is costly
	(B) Anode will be affected by produced Cl_2
	(C) Graphite remain unaffected by produced Cl_2
	(D) Ni may be affected by high temp.
\/Y0	
	CELLANEOUS TYPE QUESTION ANSWER KEY True / False
•	1. T 2. T 3. F 4. T 5. F 6. T 7. T
•	Fill in the Blanks
	1. Al 2.Tin 3.Impure 4.Al 5.K 6. CO 7.MgO,CaO, silicate, phosphate
	8. Cu 9.FeSiO ₃ 10.Above, Cu
•	Match the Column
	$\textbf{1.} \ (A) \rightarrow \ p,q,s \ ; \ (B) \rightarrow p,q,s \ ; \ (C) \rightarrow q,s \ ; \ (D) \rightarrow r \\ \textbf{2.} \ (A) \rightarrow p,s \ ; \ (B) \rightarrow s \ ; \ (C) \rightarrow q,r \ ; \ (D) \rightarrow q,r \\ \textbf{3.} \ (A) \rightarrow p,s \ ; \ (B) \rightarrow s \ ; \ (C) \rightarrow q,r \ ; \ (D) \rightarrow q,r \\ \textbf{4.} \ (A) \rightarrow p,s \ ; \ (B) \rightarrow s \ ; \ (C) \rightarrow q,r \ ; \ (D) \rightarrow q,r \\ \textbf{4.} \ (A) \rightarrow p,s \ ; \ (B) \rightarrow s \ ; \ (C) \rightarrow q,r \ ; \ (D) \rightarrow q,r \\ \textbf{4.} \ (A) \rightarrow p,s \ ; \ (B) \rightarrow s \ ; \ (C) \rightarrow q,r \ ; \ (D) \rightarrow q,r \\ \textbf{4.} \ (A) \rightarrow p,s \ ; \ (B) \rightarrow s \ ; \ (C) \rightarrow q,r \ ; \ (D) \rightarrow q,r \\ \textbf{4.} \ (A) \rightarrow p,s \ ; \ (B) \rightarrow s \ ; \ (C) \rightarrow q,r \ ; \ (D) \rightarrow q,r \\ \textbf{4.} \ (A) \rightarrow p,s \ ; \ (B) \rightarrow s \ ; \ (C) \rightarrow q,r \ ; \ (D) \rightarrow q,r \\ \textbf{4.} \ (A) \rightarrow p,s \ ; \ (B) \rightarrow s \ ; \ (C) \rightarrow q,r \ ; \ (D) \rightarrow q,r \\ \textbf{4.} \ (A) \rightarrow p,s \ ; \ (B) \rightarrow s \ ; \ (C) \rightarrow q,r \ ; \ (D) \rightarrow q,r \\ \textbf{4.} \ (A) \rightarrow p,s \ ; \ (B) \rightarrow s \ ; \ (B) \rightarrow s \ ; \ (B) \rightarrow q,r \\ \textbf{4.} \ (B) \rightarrow p,s \ ; \ (B) \rightarrow p,s \ ; \ (B) \rightarrow p,s \ ; \ (B) \rightarrow q,r \\ \textbf{4.} \ (B) \rightarrow p,s \ ; \ (B) \rightarrow q,r \\ \textbf{4.} \ (B) \rightarrow p,s \ ; \ $
	3. (A) \rightarrow p ; (B) \rightarrow p,q ; (C) \rightarrow q,s ; (D) \rightarrow r
•	<u>Assertion - Reason Questions</u>
	1 . B 2 . C 3 . B 4 . B 5 . C 6 . C 7 . C 8 . A
•	Comprehension Based Questions
	Comprehension #1 : 1. D 2. A 3. B 4. C
	Comprehension #2: 1.B 2. D 3. B 4. A 5. B
<u> </u>	

- 1. Which of the metals Na, Ag and Fe are extracted by,
 - (i) Complex formation
 - (ii) Reduction with carbon and
 - (iii) Electrolysis of fused salt?
- 2. How the following impurities can be removed?
 - (a) An impurity of lead in silver.
 - (b) An impurity of cuprous oxide in copper.
 - (c) Impurities of Fe, Cu etc. in aluminium.
- **3.** Tin stone is amphoteric. Explain.
- 4. Predict the mode of occurance of the following three type of metal.
 - (i) Highly reactive (Na)
- (ii) Moderatyl reactive (Fe)
- (iii) Noble Metal (Au)
- 5. Which is better reducing agent at 710°C, Coke or CO.
- 6. Name the process from which chlorine is obtained as by product. What will happen if an aqueous solution of NaCl is subjected to electrolysis.
- 7. What is Lintz-Dusenverfahren (L-D) process?
- 8. Identify (A) to (F) in the following:

$$FeSO_4 \xrightarrow{\Delta} (A) + (B) + (C)$$
Solid
$$\underbrace{(B) + (C)}_{gas}$$

- $(B) \xrightarrow{O_2} (C)$
- $(E) \xrightarrow{H_2O} (D)$ brown ppt
- $(D) \xrightarrow{\Delta} (A)$
- $(A) \xrightarrow{HCl}$ deep yellow solution (E)
- $(E) \xrightarrow{K_4[Fe(CN)_6]}$ blue ppt. (F)

CONCEPTUAL SUBJECTIVE EXERCISE

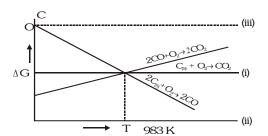
ANSWER KEY

EXERCISE -4(A)

- 1. Na (iii), Ag-(i), Fe-(ii)
- 2. (a) Cupellation, (b) Poling, (c) Electrolytic (Hoop's process)
- 3. $SnO_2 + 2H_2SO_4 \rightarrow Sn(SO_4)_2 + H_2O$ (SnO₂ react with both acid and base) $SnO_2 + NaOH \longrightarrow Na_2SnO_3$
- **4.** (i) Na \rightarrow Combined form (ii) Fe \rightarrow Combined form (iii) Au \rightarrow Native/Noble form
- 5. CO (Ellingham diagram)
- **6.** Down cell process NaOH, H₂, Cl₂
- 7. It is pyrometallurgical process in the manufacturing of steel to oxidise impurities.
- $\textbf{8.} \quad \text{(A)}: \text{Fe}_2 \text{O}_3 \quad \text{(B)}: \text{SO}_2 \quad \text{(C)}: \text{SO}_3 \quad \text{(D)}: \text{Fe}(\text{OH})_3 \quad \text{(E)}: \text{FeCl}_3 \quad \text{(F)}: \text{KFe}^{\text{III}}[\text{Fe}^{\text{II}}(\text{CN})_6], \text{ Prussian blue}.$

- 1. Write example of two metals which are manufactured by the electrolysis of their fused salts.
- 2. Write example of two metals which are used for the reduction in metallurgical process.
- Which of the following metals can be obtained by the electrolytic reduction of aqueous solution of their saltsAl, Na, Cu and Ag?
- 4. Zinc and not copper is used for the recovery of Ag from the complex [Ag(CN),]-.
- 5. Partial roasting of sulphide ore is done in the metallurgy of copper.
- **6.** Why is chalcocite roasted and not calcined during recovery of copper?
- 7. Egg shell is made up of a chemical. In which of the two ores this chemical is present.
- 8. You are provided with sample of some impure metal. Such as zinc, copper and germanium which method would you recommended for the purification of each of these metal.
- 9. Name the metal which are associated with the following term in their extraction from their ores.
 - (i) Bessmer's convertor
 - (ii) Blast furnace
 - (iii) Alumino thermic process
 - (iv) Magnetic separation
- 10. Carbon monoxide is more effective reducing agent than carbon below 983 K but above this temperature the reverse is true. How would you explain this?
- 11. Write balanced equations for the extraction of aluminium from bauxite by electrolysis.
- **12.** The following are two reaction schemes involving Mg.

Scheme-I: Mg $\xrightarrow{\text{air }\Delta}$ colourless solid A $\xrightarrow{\text{HCI}}$ colourless soltuion B $\xrightarrow{\text{Na}_2\text{CO}_3}$ white ppt C $\xrightarrow{\Delta}$ D colourless gas E $\xrightarrow{\text{Ca}(OH)_2}$ white ppt F


Scheme-II : Mg $\xrightarrow{\text{dil. H}_2SO_4}$ colourless solution G $\xrightarrow{\text{NaOH}}$ white ppt H $\xrightarrow{\text{HNO}_3}$ colourless solution $\xrightarrow{\text{evaporate}}$ I $\xrightarrow{\Delta}$ J gas + O₂ + D

- 1. Na, Al
- 2. Al, Mg, Na
- 3. Cu, Ag,
- 4. Zn is powerful, Reducing agent than Cu
- 5. Self/auto reduction
- 6. Chalcosite is a sulphide ore so on roasting it converted into oxide.
- 7. Lime stone : $CaCO_3$ Dolomite : $CaCO_3$.Mg CO_3
- $8. \hspace{0.2cm} \text{Zn} \rightarrow \text{Fractional distillation} \hspace{0.2cm} \text{Cu} \rightarrow \text{Poling} \hspace{0.2cm} \& \hspace{0.2cm} \text{electro} \hspace{0.2cm} \text{refining} \hspace{0.2cm} \text{Ge} \rightarrow \text{Zone} \hspace{0.2cm} \text{refining}/\text{fractional crystallisation}$
- ${f 9}$. (i) Cu (ii) Fe (iii) Al (iv) Tin stone and Chromite ore
- 10. The three reactions are as:

$$C_{(s)} + O_2 \longrightarrow CO_2 \qquad(i)$$

$$2C_{(s)} + O_2 \longrightarrow 2CO$$
(ii)

$$2CO + O_2 \longrightarrow 2CO_2$$
(iii)

Below 983 K reaction 2CO + $O_2 \longrightarrow 2CO_2$ is more favoured due to more negative ΔG value thus CO is better reducing agent than carbon.

Above 983 K, reaction $2C_{(s)} + O_2 \longrightarrow 2CO$ has more negative ΔG than oxidation of CO to CO_2 , so carbon will be better reducing agent.

11. The following reactions take place.

$$4AlF_3 \longrightarrow 4Al^{3+} + 12F^{-}$$

$$12F^- \longrightarrow 12F + 12e$$

At cathode : $2Al_2O_3 + 12F \longrightarrow 4AlF_3 + 3O_2$

$$4C + 3O_2 \longrightarrow 2CO + 2CO_2$$

At Anode: $4Al^{3+} + 12e^{-} \longrightarrow 4Al_{1}$

 $\textbf{12.} \ A: MgO; \quad B: MgCl_2; \quad C: MgCO_3; \quad D: MgO; \quad E: CO_2; \quad F: CaCO_3; \quad G: MgSO_4; \quad C: MgCO_2; \quad C: MgCO_3; \quad C: MgCO_4; \quad C: MgCO_5; \quad C: MgCO_4; \quad C: MgCO_5; \quad C:$

 $H\,:\, \mathsf{Mg}(\mathsf{OH})_{\!\scriptscriptstyle 2}; \quad I\,:\, \mathsf{Mg}(\mathsf{NO}_{\!\scriptscriptstyle 3})_{\!\scriptscriptstyle 2}; \quad J\,:\, \mathsf{NO}_{\!\scriptscriptstyle 2}$

PREVIOUS YEARS QUESTIONS

- 1. Aluminium is extracted by the electrolysis of :-
 - (1) Bauxite [AIEEE-2002]
 - (2) Alumina
 - (3) Alumina mixed with molten cryolite
 - (4) Molten cryolite
- 2. Pyrolusite is a/an :-

[AIEEE-2002]

- (1) Oxide ore
- (2) Sulphide ore
- (3) Carbide ore
- (4) Not an ore
- 3. Which one of the following ores is best concentrated by froth-flotation method:

[AIEEE-2004]

- (1) Galena
- (2) Cassiterite
- (3) Magnetite
- (4) Malachite
- 4. Which of the following factors is of no significance for roasting sulphide ores to the oxides and not subjecting the sulphide ores to carbon reduction directly?

 [AIEEE-2008]
 - (1) Metal sulphides are thermodynamically more stable than CS₂
 - (2) CO₂ is thermodynamically more stable than CS₂
 - (3) Metal sulphides are less stable than the corresponding oxides
 - (4) CO₂ is more volatile than CS₂
- 5. In context with the industrial preparation of hydrogen from water gas (CO + H_2), which of the following is the correct statement? [AIEEE-2008]
 - (1) CO and H₂ are fractionally separated using differences in their densities
 - (2) CO is removed by absorption in aqueous Cu2Cl2 solution
 - (3) H_2 is removed through occlusion with Pd
 - (4) CO is oxidised to CO2 with steam in the presence of a catalyst followed by absorption of CO2 in alkali
- 6. Which method of purification is represented by the following equation :

[AIEEE-2012]

- $Ti(s) + 2I_2(g) \xrightarrow{523K} TiI_4(g) \xrightarrow{1700K} Ti(s) + 2I_2(g)$
- (1) Van Arkel
- (2) Zone refining
- (3) Cupellation
- (4) Poling

PREVIOUS	YEARS	QUESTIONS	ns		ANSWER		KEY	KEY		
			Que.	1	2	3	4	5	6	
			Ans	3	1	1	3	4	1	

EXERCISE-05 [B]

PREVIOUS YEARS QUESTIONS

1.	When the ore haer	matite is burnt	in air with co	oke around 2	2000 C alongwit	h lime, the proc	ess not only
	produces steel but a	also produces a	silicate slag,	that is useful	l in making build	ing materials sucl	n as cement.
	Discuss the same a	and show throu	igh balanced	chemical eq	uation :	[1998;4M]

- 2. In the commercial electrochemical process for aluminium extraction, the electrolyte used as:[IIT-1999]
 - (A) $Al(OH)_3$ in NaOH solution
 - (B) An aqueous solution of $Al_2(SO_4)_3$
 - (C) A molten mixture of Al₂O₃ and Na₃AlF₆
 - (D) A molten mixture of AlO(OH) and Al(OH)3
- 3. Write the chemical reactions involved in the extraction of metallic silver from argentite. [IIT-2000]
- 4. Write down reactions involved in the extraction of Pb. What is the oxidation number of lead in litharge? [IIT-2000]
- 5. The chemical process in the production of steel from haematite ore involve : [IIT-2000]
 - (A) Reduction

- (B) Oxidation
- (C) Reduction followed by oxidation
- (D) Oxidation followed by reduction
- 6. Electrolyte reduction of alumina to aluminium by Hall-Heroult process is carried out: [IIT-2000]
 - (A) In the presence of NaCl
 - (B) In the presence of fluorite
 - (C) In the presence of cryolite which forms a melt with lower melting temperature
 - (D) In the presence of cryolite which forms a melt with higher melting temperature
- 7. The chemical composition of slag formed during smelting process in the extraction of Cu is :[IIT-2001]
 - (A) Cu₂O + FeS
- (B) FeSiO₃
- (C) CuFeS₂
- (D) $Cu_2S + FeO$
- 8. Which of the process is used in the extractive metallurgy of Mg:

[IIT-2002]

(A) Fused salt electrolysis

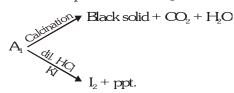
(B) Self reduction

(C) Aqueous solution electrolysis

- (D) Thermite reduction
- 9. Roasted gold ore + $CN^- + H_2O \xrightarrow{O_2} [X] + OH^-$

[IIT-2003]

$$[X] + Zn \longrightarrow [Y] + Au.$$


[X] and [Y] are:

- (A) $X = [Au(CN)_2]^-$; $Y = [Zn(CN)_4]^{2-}$ (B) $X = [Au(CN)_4]^{3-}$; $Y = [Zn(CN)_4]^{2-}$

- (C) $X = [Au(CN)_2]^-$;
- $Y = [Zn(CN)_6]^{4-}$ (D) $X = [Au(CN)_4]^{3-}$; $Y = [Zn(CN)_6]^{2-}$
- 10. The methods chiefly used for the extraction of lead and tin from their ores are respectively:[IIT-2004]
 - (A) self reduction and carbon reduction
- (B) self reduction and electrolytic reduction
- (C) carbon reduction and self reduction
- (D) cyanide process and carbon reduction
- 11. Which ore contains both iron and copper?

[IIT-2004]

- (A) Cuprite
- (B) Chalcocite
- (C) Chalcopyrite
- (D) Malachite
- 12. A_1 and A_2 are two ores of metal M. A_1 on calcination gives black precipitate, CO_2 and water.[IIT-2004]

$$A_2 \xrightarrow{Roasting} Metal + gas \xrightarrow{K_2Cr_2O_7} Green Colour$$

Identify A_1 and A_2 .

13. Match the column:

Column I			[IIT-2006]	
(A)	Self reduction	(p)	Lead	
(B)	Carbon reduction	(q)	Silver	
(C)	Complex formation and displacement by metal	(r)	Copper	
(D)	Decomposition of iodide	(s)	Boron	

14. Extraction of zinc from zinc blende is achieved by : [IIT-2007]

- (A) electrolytic reduction
- (B) roasting followed by reduction with carbon
- (C) roasting followed by reduction with another metal
- (D) roasting followed by self-reduction

15. Match the column:

Column I		Column II		[IIT-2008]
(A) (B) (C) (D)	$PbS \rightarrow PbO$ $CaCO_3 \rightarrow CaO$ $ZnS \rightarrow Zn$ $Cu_2S \rightarrow Cu$	(p) (q) (r) (s)	Roasting Calcination Carbon reduction Self reduction	

16. Native silver metal forms a water soluble complex with a dilute aqueous solution of NaCN in the presence of

(A) nitrogen

(B) oxygen

[IIT-2008]

(C) carbon dioxide

(D) argon

Paragraph for questions 17 to 19

Copper is the most nobel of the first row transition metals and occurs in small deposits in several countries. Ores of copper include chalcanthite (CuSO $_4$. $5H_2O$), atacamite (Cu $_2$ Cl(OH) $_3$), cuprite (Cu $_2O$), copper glance (Cu₂S) and malachite (Cu₂(OH)₂CO₃). However, 80% of the world copper production comes from the ore chalcopyrite (CuFeS₂). The extraction of copper from chalcopyrite involves partial roasting, removal of iron and self-reduction.

17. Partial roasting of chalcopyrite produces :- [IIT-2010]

[IIT-2011]

- (A) Cu₂S and FeO
- (B) Cu₂O and FeO
- (C) CuS and Fe₂O₃
- (D) Cu₂O and Fe₂O₃

- Iron is removed from chalcopyrite as :-18.
 - (A) FeO

(B) FeS

- (C) Fe₂O₃
- (D) FeSiO₃

- 19. In self-reduction, the reducing species is :-
 - (A) S

(B) O^{2-}

- (C) S^{2-}
- (D) SO₂

20. Extraction of metal from the ore cassiterite involves

(B) self-reduction of a sulphide ore

(A) carbon reduction of an oxide ore

(C) removal of copper impurity

- (D) removal of iron impurity
- 21. [IIT-2011] Oxidation states of the metal in the minerals haematite and magnetite, respectively, are
 - (A) II, III in haematite and III in magnetite
- (B) II, III in haematite and II in magnetite
- (C) II in haematite and II, III in magnetite
- (D) III in haematite and II, III in magnetite
- 22. In the cyanide extraction process of silver from argentite ore, the oxidizing and reducing agents used are :
 - (B) O_2 and Z_1 dust respectively. [IIT-2012]

(A) O_2 and CO respectively.

(D) HNO₃ and CO respectively.

(C) HNO_3 and Zn dust respectively.

- 23. Sulfide ores are common for the metals -
- (B) Ag, Cu and Sn

(A) Ag, Cu and Pb (C) Ag, Mg and Pb

- (D) Al, Cu and Pb
- 24. The carbon-based reduction method is NOT used for the extraction of

[IIT-2013]

[IIT-2013]

(A) tin from SnO_2

(B) Iron from Fe_2O_3

(C) aluminium from Al₂O₃

(D) magnesium from MgCO₃.CaCO₃

PREVIOUS YEARS QUESTIONS

ANSWER KEY

EXERCISE -5 [B]

- 1. Heamatite (Fe₂O₃) on burning with coke and lime at 2000 K in blast furnace results in the following.
- (i) Upper zone

(400 C to 700 C) Fe₂O₃ + 3CO
$$\rightarrow$$
 2Fe + 3CO₂
$$3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + CO_2$$

$$Fe_3O_4 + CO \rightarrow 3FeO + CO_2$$

$$FeO + CO \rightarrow Fe + CO_2$$

This reaction occurs in following steps:

(ii) Middle zone

(800 C to 1000 C) C +
$$CO_2 \rightarrow 2CO$$

FeO + CO
$$\rightarrow$$
 Fe(s) + CO₂

(iii) Upper lower zone Impure iron metals

(1200 C to 1500 C) CaO +
$$\mathrm{SiO}_2 \rightarrow \mathrm{CaSiO}_3$$
 (slag)

(iv) Lower zone Phosphates and silicates are reduced.

(1500 C to 1600 C) P and S pass into molten iron

$$C + O_2 \rightarrow CO_2$$

- **2**. (C)
- 3. $Ag_2S + 4 NaCN$ \longrightarrow $2Na[Ag(CN)_2] + Na_2S$

Argentite (0.7% solution) sodium argentocyanide

$$2Na[Ag(CN)_2] + Zn \longrightarrow Na_2[Zn(CN)_4] + 2Ag \downarrow$$

This Na_2S is oxidised into Na_2SO_4 to avoid reversibility of reaction.

$$4\text{Na}_2\text{S} + 5\text{O}_2 + 2\text{H}_2\text{O} \longrightarrow 2\text{Na}_2\text{SO}_4 + 4\text{NaOH} + 2\text{S}\downarrow$$

4.
$$2PbS + 3O_2 \longrightarrow 2PbO + 2SO_2^{\uparrow}$$

 $PbS + 2O_2 \longrightarrow PbSO_4$ Roasting

The roasted mineral is smelted into lead.

$$\begin{array}{c|c} 2PbO + PbS \longrightarrow 3Pb + 3SO_2^{\uparrow} \\ PbSO_4 + PbS \longrightarrow 2Pb + 2SO_2 \end{array} \end{array} \ \ \, Smelting$$

This lead is purified by any suitable method. In litharge (PbO) oxidation state of lead is +2.

- **5**.D
- **6**. C
- **7**. B
- 8. A
- 9. A
- **10**. A

- **11**. C
- **12.** A_1 : Malachite A_2 : Copper glance
- 13. (A) \rightarrow p,r ; (B) \rightarrow p ; (C) \rightarrow q ; (D) \rightarrow s

- **14**. B
- **15.** (A) \rightarrow p; (B) \rightarrow q; (C) \rightarrow p,r; (D) \rightarrow p,s

20. (A, C, D)

- **16**. B
- **17**. A

- **18**. D
- **19**. C

- **21**. D

- 23. (A)
- **24.** (C, D)

- **22**. B